全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于第一性原理研究Rh掺杂SnO2(110)表面对CO的气敏吸附
Sensing Mechanism of Rh Doped SnO2(110) Surface for CO

DOI: 10.12677/jsta.2024.123052, PP. 480-485

Keywords: CO,SnO2(110),Rh掺杂,密度泛函理论
CO
, SnO2(110), Rh Doping, Density Functional Theory

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要利用第一性原理研究Rh掺杂的SnO2(110)表面对于CO气敏吸附行为,通过计算CO分子在化学计量及Rh掺杂的SnO2(110)表面的吸附能、电荷布居和吸附距离,分析CO分子在表面掺杂前后的态密度图,揭示气敏吸附机理。Rh原子的掺入使CO分子的吸附能从?1.09 eV降低到了?2.15 eV,mulliken电荷从0.44e增加至0.50e,键长从1.176 ?降低到了1.108 ?,结果说明Rh原子的掺杂有利于提高SnO2(110)表面对CO的吸附性能。
In this paper, the first-principles adsorption behavior of CO on the surface of Rh-doped SnO2(110) is mainly studied, and the adsorption energy, charge distribution and adsorption distance of CO molecules on the stoichiometric and Rh-doped SnO2(110) surfaces are calculated, and the density of states and charge difference density of CO molecules before and after surface doping are analyzed, and the gas-sensitive adsorption mechanism is revealed. The adsorption energy of CO molecules decreased from ?1.09 eV to ?2.15 eV, the mulliken charge increased from 0.44e to 0.50e, and the bond length decreased from 1.176 ? to 1.108 ? by the incorporation of Rh atoms, indicating that the doping of Rh atoms was beneficial to improve the adsorption performance of acetone on the surface of SnO2(110).

References

[1]  Mahajan, S. and Jagtap, S. (2019) Metal-Oxide Semiconductors for Carbon Monoxide (CO) Gas Sensing: A Review. Applied Materials Today, 18, Article ID 100483.
https://doi.org/10.1016/j.apmt.2019.100483
[2]  Capone, S., Benkovicova, M., Forleo, A., et al. (2017) Palladium/γ-Fe2O3 Nanoparticle Mixtures for Acetone and NO2 Gas Sensors. Sensors & Actuators B Chemical, 243, 895-903.
https://doi.org/10.1016/j.snb.2016.12.027
[3]  Krishna, K.G., Parne, S., Pothukanuri, N., et al. (2021) Nanostructured Metal Oxide Semiconductor-Based Gas Sensors: A Comprehensive Review. Sensors and Actuators A: Physical, 341, Article ID 113578.
https://doi.org/10.1016/j.sna.2022.113578
[4]  Kou, X.Y., Xie, N., Chen, F., et al. (2018) Superior Acetone Gas Sensor Based on Electrospun SnO2 Nanofibers by Rh Doping. Sensors & Actuators B Chemical, 256, 861-869.
https://doi.org/10.1016/j.snb.2017.10.011
[5]  Lin, Y., Wang, Y., Wei, W., et al. (2015) Synergistically Improved Formaldehyde Gas Sensing Properties of SnO2 Microspheres by Indium and Palladium Co-Doping. Ceramics International, 41, 7329-7336.
https://doi.org/10.1016/j.ceramint.2015.02.033
[6]  Wei, W., Dai, Y. and Huang, B. (2011) Role of Cu Doping in SnO2 Sensing Properties toward H2S. The Journal of Physical Chemistry C, 115, 18597-18602.
https://doi.org/10.1021/jp204170j
[7]  Xue, Y.B. and Tang, Z.A. (2009) Density Functional Study of the Properties of CO Adsorption on SnO2(110) Surface. Chemical Journal of Chinese Universities-Chinese, 30, 583-587.
[8]  Xu, J., Huang, S.P. and Wang, Z.S. (2009) First Principle Study on the Electronic Structure of Fluorine-Doped SnO2. Solid State Communications, 149, 527-531.
https://doi.org/10.1016/j.ssc.2009.01.010
[9]  Wang, Q.B., Zhou, C., Chen, L., et al. (2014) The Optical Properties of Nias Phase ZnO under Pressure Calculated by GGA U Method. Optics Communications, 312, 185-191.
https://doi.org/10.1016/j.optcom.2013.09.035
[10]  Wang, F., Fan, J.M., Sun, Q., et al. (2016) Adsorption Mechanism of Cu-Doped SnO2(110) Surface toward H2 Dissolved in Power Transformer. Journal of Nanomaterials, 2016, Article ID 3087491.
https://doi.org/10.1155/2016/3087491
[11]  Tian, L., Li, Z. and Xu, X.N. (2021) Advances in Noble Metal (Ru, Rh, and Ir) Doping for Boosting Water Splitting Electrocatalysis. Journal of Materials Chemistry A, 9, 13459-13470.
https://doi.org/10.1039/D1TA01108A

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413