全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

主动调Q Nd:YVO4/KTP双波长同步脉冲拉曼激光器
Active Q-Switched Nd:YVO4/KTP Dual-Wavelength Synchronized Pulse Raman Laser

DOI: 10.12677/app.2024.145034, PP. 294-300

Keywords: 主动调Q,Nd:YVO4,KTP,拉曼激光器
Active Q-Switching
, Nd:YVO4, KTP, Raman Laser

Full-Text   Cite this paper   Add to My Lib

Abstract:

实现了以a切Nd:YVO4晶体为自拉曼介质,以KTP晶体为另一种拉曼介质的二极管泵浦声光调Q双波长同步振荡拉曼激光器的高效运转,获得了1096 nm和1176 nm激光的同步脉冲输出,分别对应KTP晶体的267 cm1频移和YVO4晶体的890 cm1位移的一阶斯托克斯光,脉冲重复频率为10、20和30 kHz。当入射泵浦功率为9.16 W,PRF为30 kHz时,由1096和1176 nm光源组成的拉曼激光平均输出最高为1.26 W,其中含1096 nm激光1.05 W,1176 nm激光0.21 W。
Efficient operation of a diode-pumped acousto-optically Q-switched dual-wavelength synchronized oscillating Raman laser was achieved by utilizing an a-cut Nd:YVO4 crystal as the self-Raman medium and a KTP crystal as the other Raman medium. Synchronized pulse outputs at 1096 nm and 1176 nm, corresponding to the first-order Stokes light with a Raman shift of 267 cm1 in the KTP crystal and a Raman shift of 890 cm1 in the YVO4 crystal, were obtained at pulse repetition frequencies of 10 kHz, 20 kHz, and 30 kHz. At an incident pump power of 9.16 W and a pulse repetition frequency of 30 kHz, the highest average output power of the Raman laser, consisting of 1096 nm and 1176 nm sources, reached 1.26 W, with 0.83 W for the 1096 nm laser and 0.43 W for the 1176 nm laser.

References

[1]  Pask, H.M. (2003) The Design and Operation of Solid-State Raman Lasers. Progress in Quantum Electronics, 27, 3-56.
https://doi.org/10.1016/S0079-6727(02)00017-4
[2]  Duan, Y., Sun, Y., Zhu, H., et al. (2020) YVO4 Cascaded Raman Laser for Five-Visible-Wavelength Switchable Emission. Optics Letters, 45, 2564-2567.
https://doi.org/10.1364/OL.392566
[3]  Fan, L., Wang, X., Zhao, X., et al. (2020) First-Stokes and Second-Stokes Multi-Wavelength Continuous-Wave Operation in Nd:YVO4/BaWO4 Raman Laser under In-Band Pumping. Chinese Optics Letters, 18, Article ID: 111401.
https://doi.org/10.3788/COL202018.111401
[4]  Chen, H., Cui, Y., Li, X., et al. (2023) High-Power Dual-Wavelength Intracavity Diamond Raman Laser. Functional Diamond, 3, Article ID: 2282527.
https://doi.org/10.1080/26941112.2023.2282527
[5]  Shen, H., Wang, Q., Zhang, X., et al. (2012) Simultaneous Dual-Wavelength Operation of Nd:YVO4 Self-Raman Laser at 1524 nm and Undoped GdVO4 Raman Laser at 1522 Nm. Optics Letters, 37, 4113-4115.
https://doi.org/10.1364/OL.37.004113
[6]  Shen, H., Wang, Q., Zhang, X., et al. (2013) Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 Nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm. Applied Physics Express, 6, Article ID: 042704.
https://doi.org/10.7567/APEX.6.042704
[7]  Lin, H.Y., Copner, N., Sun, D., et al. (2016) Dual-Wavelength CW A-Cut Nd:YVO4 Laser at 1064.3 and 1066.7 nm. Optik, 127, 9073-9075.
https://doi.org/10.1016/j.ijleo.2016.06.120
[8]  Duan, Y.M., Zhang, G., Zhang, Y.J., et al. (2011) LD End-Pumped C-Cut Nd:YVO4/KTP Self-Raman Laser at 560 nm. Laser Physics, 21, 1859-1862.
https://doi.org/10.1134/S1054660X11190108
[9]  Duan, Y., Yang, F., Zhu, H., et al. (2010) Continuous-Wave 560 nm Light Generated By Intracavity SrWO4 Raman and KTP Sum-Frequency Mixing. Optics Communications, 283, 5135-5138.
https://doi.org/10.1016/j.optcom.2010.07.042
[10]  Gao, Z. H., et al. (2021) A Tunable Single-Frequency Green Laser Based on a Wedged Nd:YVO4 Crystal and a KTP Crystal. Laser Physics, 31, Article ID: 065002.
https://doi.org/10.1088/1555-6611/abf9a0
[11]  Zhuang, F.J., Zheng, Y.Q., Huang, C.H., et al. (2010) Efficient and Compact Intracavity-Frequency-Doubled YVO4/Nd:YVO4/KTP Laser through Analysis of the Interaction Length. Optics Communications, 283, 3324-3327.
https://doi.org/10.1016/j.optcom.2010.04.061
[12]  Sun, B., et al. (2020) 13.7-W 588-nm Yellow Laser Generation by Frequency Doubling of 885-nm Side-Pumped Nd:YAG-YVO4 Intracavity Raman Laser. IEEE Photonics Journal, 12, 1-7.
https://doi.org/10.1109/JPHOT.2020.2978024
[13]  Sun, B., et al. (2020) High-Power High-Repetition-Rate Tunable Yellow Light Generation by an Intracavity-Frequency-Doubled Singly Resonant Optical Parametric Oscillator. IEEE Photonics Journal, 12, 1-10.
https://doi.org/10.1109/JPHOT.2020.2994229
[14]  Meng, X., Wang, Z., Tian, W., et al. (2021) High Average Power 200 Fs Mid-Infrared KTP Optical Parametric Oscillator Tunable from 2.61 to 3.84 μM. Applied Physics B, 127, Article No. 129.
https://doi.org/10.1007/s00340-021-07675-w
[15]  Li, F., Zhong, K., Qiao, H., et al. (2021) A Wavelength-Agile Eye-Safe Optical Parametric Oscillator Based on an X-Cut KTP Crystal. IEEE Photonics Journal, 13, 1-4.
https://doi.org/10.1109/JPHOT.2021.3113305
[16]  Massey, G.A., Loehr, T.M., Willis, L.J., et al. (1980) Raman and Electrooptic Properties of Potassium Titanate Phosphate. Applied Optics, 19, 4136-4137.
https://doi.org/10.1364/AO.19.004136
[17]  Pasiskevicius, V., Canalias, C. and Laurell, F. (2006) Highly Efficient Stimulated Raman Scattering of Picosecond Pulses in KTiOPO4. Applied Physics Letters, 88, Article ID: 041110.
https://doi.org/10.1063/1.2166683
[18]  Su, F., Zhang, X., Wang, W., et al. (2013) High-Efficient Diode-Pumped Actively Q-Switched Nd: YAG/KTP Raman Laser at 1096 nm Wavelength. Optics Communications, 305, 201-203.
https://doi.org/10.1016/j.optcom.2013.04.043
[19]  Chen, Y.F. (2004) Compact Efficient Self-Frequency Raman Conversion in Diode-Pumped Passively Q-Switched Nd:GdVO4 Laser. Applied Physics B, 78, 685-687.
https://doi.org/10.1007/s00340-004-1515-5
[20]  Chen, Y.F. (2004) Efficient 1521-nm Nd:GdVO4 Raman Laser. Optics Letters, 29, 2632-2634.
https://doi.org/10.1364/OL.29.002632

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133