全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高温高压下叶蜡石和白云石的结构研究
Study on the Structure of Pyrophyllite and Dolomite under High Temperature and Pressure

DOI: 10.12677/japc.2024.132019, PP. 158-164

Keywords: 叶蜡石,白云石,传压介质,热重分析,金刚石
Pyrophyllite
, Dolomite, Pressure Transfer Medium, TG, Diamond

Full-Text   Cite this paper   Add to My Lib

Abstract:

叶蜡石和白云石是金刚石高温高压合成工艺中重要的辅助原材料,直接影响着高压合成过程中的设备安全及产品质量。同时,高温高压环境必然会对叶蜡石和白云石的结构性能产生重要影响。采用X射线衍射和热重分析研究了叶蜡石模具和白云石套管在高温高压使用前后的成分和结构变化。结果表明:经高温高压使用后,叶蜡石模具,包括其边角处、外侧、中部和内侧均未产生相变,与使用前具有相似的结构和热稳定性。而白云石则发生明显改变,高温高压下套管外侧的白云石会部分分解,生成CaCO3和MgCO3,而套管内侧白云石则相对稳定。但是由于高温扩散作用,石墨会扩散并在白云石套管内侧形成聚集。因此,该结果表明,高温高压使用后的叶蜡石存在再次循环使用的可能性。
Pyrophyllite and dolomite are two important auxiliary materials in the high-temperature and high-pressure synthesis process for diamond. Both pyrophyllite and dolomite directly affect the equipment safety and product quality during the diamond production process. Simultaneously, the high-temperature and high-pressure environment will inevitably affect the structural properties of pyrophyllite and dolomite. The composition and structure changes of pyrophyllite and dolomite after the high-temperature and high-pressure process were studied by X-ray diffraction and thermo gravimetric analysis. The results show that there is no phase change in the corner, outside, middle and inside of the pyrophyllite mold after the process of high-temperature and high-pressure. Its structure and thermal stability are similar to the initial pyrophyllite before use. Different from pyrophyllite, under high temperature and high pressure, the dolomite outside the casing will be partially decomposed into CaCO3 and MgCO3, while the dolomite inside the casing is relatively stable. However, due to the high temperature diffusion, the graphite will diffuse and form aggregation in the casing. Therefore, the results show that pyrophyllite after high temperature and high pressure use has the possibility of recycling in theory.

References

[1]  罗斌. 一种新型传压介质制作工艺及其金刚石合成实验[J]. 超硬材料工程, 2006, 18(4): 19-20.
[2]  徐国平, 郑日升, 梁红原. 叶蜡石的矿物成分对合成金刚石的影响[J]. 金刚石与磨料磨具工程, 2005(2): 64-66.
[3]  Tian, Y., Du, M.H., Zhang, J.W. and He, D.W. (2024) Research on Pressure Transmission and Sealing Performance of Pyrophyllite in a Cubic Large Chamber Static High-Pressure Device. Acta Physica Sinica, 73, Article ID: 019101.
https://doi.org/10.7498/aps.73.20231087
[4]  Fontanari, V., Bellin, F., Visintainer, M. and Ischia, G. (2006) Study of Pressure Sensitive Plastic Flow Behaviour of Gasket Materials. Experimental Mechanics, 46, 313-323.
https://doi.org/10.1007/s11340-006-7105-1
[5]  Mukhopadhyay, T.K., Ghatak, S. and Maiti, H.S. (2010) Pyrophyllite as Raw Material for Ceramic Applications in the Perspective of Its Pyro-Chemical Properties. Ceramics International, 36, 909-916.
https://doi.org/10.1016/j.ceramint.2009.10.026
[6]  Liu, Y.J., He, D.W., Wang, P., Tang, M.J., Xu, C., Wang, W.D., Liu, J., Liu, G.D. and Kou, Z.L. (2017) Syntheses and Studies of Superhard Composites under High Pressure. Acta Physica Sinica, 66, Article ID: 038103.
https://doi.org/10.7498/aps.66.038103
[7]  李勇, 杨勇, 周琴, 王玲. 叶蜡石成分分析方法的选择与验证[J]. 玻璃纤维, 2014(3): 1-5.
[8]  张莉丽, 林峰, 吕智, 肖乐银, 何绪林, 王文龙, 李立惟. 我国叶蜡石的开发研究及其应用现状(下) [J]. 超硬材料工程, 2014, 26(4): 43-46.
[9]  车朝红, 赵义文. 传压介质的性能与金刚石的合成[J]. 地质装备, 2000(2): 30-33.
[10]  徐跃, 陈晓东, 郝兆印. 高温高压后叶蜡石相变的研究[J]. 金刚石与磨料磨具工程, 2007(6): 76-79.
[11]  贾攀, 张凤莲, 胡来运, 武周军, 赵鹏, 栗波, 孙立伟, 王飞飞. 一种特殊的金刚石合成结构装置[J]. 超硬材料工程, 2016, 28(1): 28-30.
[12]  陶艳春, 郝兆印, 贾攀, 卢灿华. 高温高压下叶蜡石和白云石的Raman光谱分析[J]. 金刚石与磨料磨具工程, 2003, 7(6): 61-64.
[13]  Niu, F., Wang, K., Sun, T., Zhou, P., Hu, W. and Zhu, Y.W. (2021) Lapping Performance of Mixed-Size Agglomerated Diamond Abrasives in Fixed Abrasives Pads. Diamond and Related Materials, 118, Article ID: 108499.
https://doi.org/10.1016/j.diamond.2021.108499
[14]  Pérez-Rodríguez, J.L., Wiewiora, A., Ramirez-Valle, V., Durán, A. and Pérez-Maqueda, L.A. (2007) Preparation of nano-Pyrophyllite: Comparative Study of Sonication and Grinding. Journal of Physics and Chemistry of Solids, 68, 1225-1229.
https://doi.org/10.1016/j.jpcs.2007.01.007
[15]  张振禹, 汪灵. 叶蜡石加热相变特征的X射线粉晶衍射分析[J]. 硅酸盐学报, 1998(5): 618-623, 629.
[16]  汪灵, 张振禹. 叶蜡石高温物相及其演化特征[J]. 科学通报, 1996, 41(13): 1201-1204.
[17]  邓雯丽, 邓福铭, 马向东, 许晨阳, 赵君. 叶蜡石高压同步辐射X射线衍射分析[J]. 矿业科学学报, 2019, 4(3): 254-260.
[18]  张书霞, 杨缤维, 鲁伟员, 姚勇, 姜伟, 寇自力. 复合型传压介质的现状及发展[J]. 金刚石与磨料磨具工程, 2005(6): 77-80.
[19]  郝兆印, 贾攀, 卢灿华, 李颖. 高温高压条件下叶蜡石的相变[J]. 金刚石与磨料磨具工程, 2003(3): 59-63.
[20]  许晨阳, 邓雯丽, 朱江坡, 黄佳阳, 荣宇佳, 孙源培. 叶蜡石的水含量对传压密封性能的影响[J]. 山东工业技术, 2018(2): 59-60.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133