全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Swin-Unet改进的医学图像分割算法
Improved Medical Image Segmentation Algorithm Based on Swin-Unet

DOI: 10.12677/airr.2024.132037, PP. 354-362

Keywords: 神经网络,医学图像,分割算法
Neural Network
, Medical Image, Segmentation Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

在过去的十几年时间里,基于CNN的神经网络在医学图像分割领域取得了突破性进展。尤其是以unet为代表的u形网络架构和跳跃连接被广泛应用于一系列的医学图像任务。由于CNN的内在局限性,不能够很好的获取到全局和远程语义信息交互。由于腹部器官复杂,容易发生形变、边缘模糊、体积小等原因导致分割比较困难。因此在Swin-Unet的基础上改进,首先末端编码器与首个解码器之间引入多尺度模型提取模块,增强不同形状大小信息特征提取。其次将最后两个编码器和解码器的swin transformer Block引入残差机制来缓解模型深度带来的梯度弥散现象。并且在最后的编码器末端引入ASSP模块获取多尺度细节信息。最后,在跳跃连接中引入通道注意力机制(CAM),可以让模型强化重要信息特征通道,弱化特征不相关通道,最后达到有效提高模型分割精度和准确度的效果。
In the past ten years, CNN-based neural networks have made breakthrough progress in the field of medical image segmentation. In particular, the U-shaped network architecture and skip connections represented by unet are widely used in a series of medical image tasks. Due to the inherent limitations of CNN, global and remote semantic information interaction cannot be well obtained. Due to the complexity of abdominal organs, which are prone to deformation, blurred edges, and small size, segmentation is difficult. Therefore, based on Swin-Unet, a multi-scale model extraction module is introduced between the terminal encoder and the first decoder to enhance the extraction of information features of different shapes and sizes. Secondly, the residual mechanism is introduced into the swin transformer Block of the last two encoders and decoders to alleviate the gradient dispersion phenomenon caused by the depth of the model. And the ASSP module is introduced at the end of the final encoder to obtain multi-scale detailed information. Finally, introducing the channel attention mechanism (CAM) in the skip connection allows the model to strengthen important information feature channels and weaken feature irrelevant channels, and finally achieve the effect of effectively improving the model segmentation precision and accuracy.

References

[1]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015: 18th International Conference, Munich, 5-9 October 2015, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[2]  Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., et al. (2018) Unet : A Nested U-Net Architecture for Medical Image Segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, 20 September 2018, 3-11.
https://doi.org/10.1007/978-3-030-00889-5_1
[3]  Diakogiannis, F.I., Waldner, F., Caccetta, P., et al. (2020) ResUNet-a: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 94-114.
https://doi.org/10.1016/j.isprsjprs.2020.01.013
[4]  Shi, Z., Miao, C., Schoepf, U.J., et al. (2020) A Clinically Applicable Deep-Learning Model for Detecting Intracranial Aneurysm in Computed Tomography Angiography Images. Nature Communications, 11, 6090.
https://doi.org/10.1038/s41467-020-19527-w
[5]  Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. Advances in Neural Information Processing Systems. arXiv preprint arXiv: 1706.03762.
[6]  Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. (2020) An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv: 2010.11929.
[7]  Chen, J., Lu, Y., Yu, Q., et al. (2021) Transunet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv preprint arXiv: 2102.04306.
[8]  Cao, H., Wang, Y., Chen, J., et al. (2022) Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation. European Conference on Computer Vision, Springer Nature Switzerland, Cham, 205-218.
https://doi.org/10.1007/978-3-031-25066-8_9
[9]  Chen, L.C., Papandreou, G., Schroff, F., et al. (2017) Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv:1706.05587.
[10]  Oktay, O., Schlemper, J., Folgoc, L.L., et al. (2018) Attention U-Net: Learning Where to Look for the Pancreas. arXiv:1804.03999.
[11]  Maji, D., Sigedar, P. and Singh, M. (2022) Attention Res-UNet with Guided Decoder for Semantic Segmentation of Brain Tumors. Biomedical Signal Processing and Control, 71, Article ID: 103077.
https://doi.org/10.1016/j.bspc.2021.103077
[12]  Guo, C., Szemenyei, M., Yi, Y., et al. (2021) SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation. 2020 25th International Conference on Pattern Recognition (ICPR), Milan, 10-15 January 2021, 1236-1242.
https://doi.org/10.1109/ICPR48806.2021.9413346
[13]  Jamali, A., Roy, S.K., Li, J., et al. (2023) TransU-Net : Rethinking Attention Gated TransU-Net for Deforestation Mapping. International Journal of Applied Earth Observation and Geoinformation, 120, Article ID: 103332.
https://doi.org/10.1016/j.jag.2023.103332
[14]  Liu, Z., Lin, Y., Cao, Y., et al. (2021) Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, 10-17 October 2021, 10012-10022.
https://doi.org/10.1109/ICCV48922.2021.00986
[15]  Lin, A., Chen, B., Xu, J., et al. (2022) DS-TransUnet: Dual Swin Transformer U-Net for Medical Image Segmentation. IEEE Transactions on Instrumentation and Measurement, 71, 1-15.
https://doi.org/10.1109/TIM.2022.3178991
[16]  Yang, Y. and Mehrkanoon, S. (2022) AA-TransUNet: Attention Augmented TransUNet for Nowcasting Tasks. 2022 International Joint Conference on Neural Networks (IJCNN), Padua, 18-23 July 2022, 1-8.
https://doi.org/10.1109/IJCNN55064.2022.9892376
[17]  Zhang, Y., Liu, H. and Hu, Q. (2021) Transfuse: Fusing Transformers and Cnns for Medical Image Segmentation. Medical Image Computing and Computer Assisted InterventionMICCAI 2021: 24th International Conference, Strasbourg, 27 September-1 October 2021, 14-24.
https://doi.org/10.1007/978-3-030-87193-2_2
[18]  姚庆安, 张鑫, 刘力鸣, 等. 融合注意力机制和多尺度特征的图像语义分割[J]. 吉林大学学报(理学版), 2022, 60(6): 1383-1390.
[19]  He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413