|
Applied Physics 2024
KTP倍频Nd:YVO4/GdVO4级联拉曼激光器研究
|
Abstract:
以c切Nd:YVO4为自拉曼晶体,c切Nd:GdVO4作为拉曼晶体,KTP腔内倍频,采用声光调Q,实现基于两种拉曼晶体共有的259 cm?1次级频移的脉冲二阶斯托克斯光1129 nm激光的有效振荡和腔内倍频,首次获得有效564 nm黄绿脉冲激光输出。在5.83 W的入射泵浦功率下,脉冲重复率为10 kHz时,564 nm激光最高平均输出功率226 mW,脉冲宽度为5.7 ns。
Based on a c-cut Nd:YVO4 as the self-Raman crystal and a c-cut Nd:GdVO4 as the Raman crystal, second-Stokes light at 1129 nm corresponding to the secondary Raman shift of 259 cm?1 generated and was intracavity frequency-doubled with a KTP crystal, and effective output of 564 nm yellow-green pulsed laser was achieved from a acousto-optic Q-switched resonator for the first time, to the best of our knowledge. At an incident pump power of 5.83 W and a pulse repetition rate of 10 kHz, the highest average output power of the 564 nm laser reached 226 mW, with a pulse width of 5.7 ns.
[1] | Kaminskii, A.A., Ueda, K., Murai, T., et al. (2001) Tetragonal Vanadates YVO4 and GdVO4—New Efficient X(3)-Active Crystals for Raman Laser Converters. Laser Physics, 11, 1124-1133. |
[2] | Pask, H.M. (2005) Continuous-Wave, All-Solid-State, Intracavity Raman Laser. Optics Letters, 30, 2454-2456. https://doi.org/10.1364/OL.30.002454 |
[3] | Li, Y., Huang, X., Mao, W., et al. (2023) Compact 589 nm Yellow Source Generated by Frequency-Doubling of Passively Q-Switched Nd:YVO4 Raman Laser. Microwave and Optical Technology Letters, 65, 1122-1126. https://doi.org/10.1002/mop.33196 |
[4] | Chen, H., Hu, W., Wei, X., et al. (2023) High Beam Quality Yellow Laser at 588 nm by an Intracavity Frequency-Doubled Composite Nd:YVO4 Raman Laser. Optics Express, 31, 8494-8502. https://doi.org/10.1364/OE.478600 |
[5] | Lou, W., Li, S., Liu, J., et al. (2023) 568 nm Diode-Pumped Passively Q-Switched Intracavity LBO Sum-Frequency-Mixed Multi-Shift Nd:YVO4/GdVO4 Raman Laser. Optics Communications, 2023, Article ID: 129690. https://doi.org/10.1016/j.optcom.2023.129690 |
[6] | Su, F., Zhang, X., et al. (2015) Diode-Pumped Intracavity Yellow-Green Raman Laser at 560 nm with Sum-Frequency-Generation. Optics & Laser Technology, 66, 122-124. https://doi.org/10.1016/j.optlastec.2014.08.003 |
[7] | Chen, Y.F. (2004) Compact Efficient All-Solid-State Eye-Safe Laser with Self-Frequency Raman Conversion in a Nd:YVO4 Crystal. Optics Letters, 29, 2172-2174. https://doi.org/10.1364/OL.29.002172 |
[8] | Chen, Y.F. (2004) High-Power Diode-Pumped Actively Q-Switched Nd:YVO4 Self-Raman Laser: Influence of Dopant Concentration. Optics Letters, 29, 1915-1917. https://doi.org/10.1364/OL.29.001915 |
[9] | Li, S., Tang, R., Jin, G., et al. (2021) Actively Q-Switched Intracavity Nd:YVO4/GdVO4 Raman Laser Operating with Multiple Raman Shifts of 259,882 and 890 cm?1. Applied Physics B, 127, Article No. 16. https://doi.org/10.1007/s00340-020-07551-z |
[10] | Gao, J., Zhang, L., Sun, H., et al. (2014) High-Power Continuous-Wave Yellow-Green Laser at 558 nm under In-Band Pump. Optics Communications, 319, 110-112. https://doi.org/10.1016/j.optcom.2014.01.007 |
[11] | Yao, W., Gao, J., Zhang, L., et al. (2015) Continuous-Wave Yellow-Green Laser at 0.56 M Based on Frequency Doubling of a Diode-End-Pumped Ceramic Nd:YAG Laser. Applied Optics, 54, 5817-5821. https://doi.org/10.1364/AO.54.005817 |
[12] | Shen, H., Wang, Q., Zhang, X., et al. (2012) Simultaneous Dual-Wavelength Operation of Nd:YVO4 Self-Raman Laser at 1524 nm and Undoped GdVO4 Raman Laser at 1522 nm. Optics Letters, 37, 4113-4115. https://doi.org/10.1364/OL.37.004113 |
[13] | Shen, H.B., et al. (2013) Simultaneous Dual-Wavelength Operation of Nd-Doped Yttrium Orthovanadate Self-Raman Laser at 1175 nm and Undoped Gadolinium Orthovanadate Raman Laser at 1174 nm. Applied Physics Express, 6, Article ID: 042704. https://doi.org/10.7567/APEX.6.042704 |
[14] | Shen, H.B., Wang, Q.P., Zhang, Y.X., et al. (2013) A Frequency-Doubled Nd:YAG/KTP Laser at 561 nm with Diode Side-Pumping. Laser Physics, 23, Article ID: 035402. https://doi.org/10.1088/1054-660X/23/3/035402 |
[15] | Li, X., Shen, X. and Li, G. (2015) Cyclic Variation of Output Energy with Ambient Temperature Changes in Intracavity KTP Frequency-Doubling Laser. Optik, 126, 279-282. https://doi.org/10.1016/j.ijleo.2014.08.165 |
[16] | Shen, H., Wang, Q., Zhang, X., et al. (2013) Intracavity Frequency-Doubled Nd:YAG/KLu (WO4)2 Raman Laser at 589 nm: A Potential Source for Sodium D2 Resonance Radiation. Optics & Laser Technology, 45, 142-146. https://doi.org/10.1016/j.optlastec.2012.07.013 |
[17] | Lan, R., Cheng, H. and Yang, G. (2015) Continuous Wave Yb:YCOB Cyan Lasers with KTP as the Sum-Frequency Converter. Optics Communications, 357, 169-171. https://doi.org/10.1016/j.optcom.2015.09.008 |
[18] | Lu, Y., Zhang, J., et al. (2014) Orthogonally Polarized Dual-Wavelength Nd:YAlO3 Laser at 1341 and 1339 nm and Sum-Frequency Mixing for an Emission at 670 nm. Applied Optics, 53, 5141-5146. https://doi.org/10.1364/AO.53.005141 |