|
Applied Physics 2024
光热调控器件最新研究进展
|
Abstract:
光热调控器件是通过调控器件的光学性能,进而有效地管理器件的表面或内部温度,从而提高能源利用效率。智能热控器件和热致变色智能窗是最常见的两种光热调控器件。这些器件在航天器、建筑和汽车等领域发挥着重要作用,为节能减排和提高舒适度等方面提供了有效的解决方案。基于此,本文综述了近年来光热调控器件在航天器热控和智能窗领域中的最新研究进展,总结了当前研究面临的挑战,并展望了光热调控器件在未来的应用潜力,旨在为相关研究和技术发展提供参考和启示。
Photothermal regulation devices effectively manage the surface or internal temperature of devices by regulating their optical performances, thereby improving energy utilization efficiency. Intelligent thermal regulation devices and thermochromic smart windows are the most common photothermal regulation devices. These devices play an important role in fields such as spacecraft, buildings and automobiles, providing effective solutions for energy conservation, emission reduction, and improved comfort. Based on this, this article reviews the recent research progress of photothermal regulation devices in the fields of spacecraft thermal control and smart windows in recent years, summarizes the challenges faced by current research, and looks forward to the potential applications of photothermal regulation devices in the future, aiming to provide reference and inspiration for related research and technological development.
[1] | 李龙, 徐洪波, 任飞飞, 等. 光子晶体光热调控研究[J]. 中国材料进展, 2019, 38(4): 352-358 341. |
[2] | Dou, S., Xu, H., Zhao, J., et al. (2021) Bioinspired Microstructured Materials for Optical and Thermal Regulation. Advanced Materials, 33, Article ID: 2000697. https://doi.org/10.1002/adma.202000697 |
[3] | Lin, C., Hur, J., Chao, C.Y.H., et al. (2022) All-Weather Thermochromic Windows for Synchronous Solar and Thermal Radiation Regulation. Science Advances, 8, Eabn7359. https://doi.org/10.1126/sciadv.abn7359 |
[4] | Zhu, L., Tian, L., Jiang, S., et al. (2023) Advances in Photothermal Regulation Strategies: From Efficient Solar Heating to Daytime Passive Cooling. Chemical Society Reviews, 52, 7389-7460. https://doi.org/10.1039/D3CS00500C |
[5] | Prosuntsov, P. and Praheeva, A. (2021) Design of Thermal Insulation Based on Open-Cell Carbon Materials for Spacecraft. Materials Today: Proceedings, 38, 2019-2024. https://doi.org/10.1016/j.matpr.2020.10.032 |
[6] | Doherty, K.A.J., Dunne, C.F., Norman, A., et al. (2016) Flat Absorber Coating for Spacecraft Thermal Control Applications. Journal of Spacecraft and Rockets, 53, 1035-1042. https://doi.org/10.2514/1.A33490 |
[7] | Shirshneva-Vaschenko, E.V., Shirshnev, P.S., Snezhnaia, Z.G., et al. (2019) Zinc Oxide Aluminum Doped Slabs for Heat-Eliminating Coatings of Spacecrafts. Acta Astronautica, 163, 107-111. https://doi.org/10.1016/j.actaastro.2019.07.005 |
[8] | Grob, L.M. and Swanson, T.D. (2000) Parametric Study of Variable Emissivity Radiator Surfaces. AIP Conference Proceedings, 504, 809-814. https://doi.org/10.1063/1.1302579 |
[9] | Xiao, L., Ma, H., Liu, J., et al. (2015) Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films. Nano Letters, 15, 8365-8370. https://doi.org/10.1021/acs.nanolett.5b04090 |
[10] | Du, K.-K., Li, Q., Lyu, Y.-B., et al. (2017) Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST. Light: Science & Applications, 6, E16194. https://doi.org/10.1038/lsa.2016.194 |
[11] | Xu, G., Zhang, L., Wang, B., et al. (2020) A Visible-to-Infrared Broadband Flexible Electrochromic Device Based Polyaniline for Simulta-Neously Variable Optical and Thermal Management. Solar Energy Materials and Solar Cells, 208, Article ID: 110356. https://doi.org/10.1016/j.solmat.2019.110356 |
[12] | Sun, Y., Chang, H., Hu, J., et al. (2021) Large-Scale Multifunctional Carbon Nanotube Thin Film as Effective Mid-Infrared Radiation Modulator with Long-Term Stability. Advanced Optical Materials, 9, Article ID: 2001216. https://doi.org/10.1002/adom.202001216 |
[13] | Inoue, T., Zoysa, M.D., Asano, T., et al. (2014) Realization of Dynamic Thermal Emission Control. Nature Materials, 13, 928-931. https://doi.org/10.1038/nmat4043 |
[14] | Ming, Y., Sun, Y., Liu, X., et al. (2022) Optical Evaluation of a Smart Transparent Insulation Material for Window Application. Energy Conversion and Management: X, 16, Article ID: 100315. https://doi.org/10.1016/j.ecmx.2022.100315 |
[15] | Huang, Z., Chen, S., Lv, C., et al. (2012) Infrared Characteristics of VO2 Thin Films for Smart Window and Laser Protection Applications. Applied Physics Letters, 101, Article ID: 191905. https://doi.org/10.1063/1.4766287 |
[16] | Zeng, J., Wang, Y., Rajan, K., et al. (2021) Transparent-to-Black Electrochromic Smart Windows Based on N,N,N’,N’-Tetraphenylbenzidine Derivatives and Tungsten Trioxide with High Adjustment Ability for Visible and Near-Infrared Light. Solar Energy Materials and Solar Cells, 226, Article ID: 111070. https://doi.org/10.1016/j.solmat.2021.111070 |
[17] | Yang, P., Sun, P. and Mai, W. (2016) Electrochromic Energy Storage Devices. Materials Today, 19, 394-402. https://doi.org/10.1016/j.mattod.2015.11.007 |
[18] | Wang, J.-L., Sheng, S.-Z., He, Z., et al. (2021) Self-Powered Flexible Electrochromic Smart Window. Nano Letters, 21, 9976-9982. https://doi.org/10.1021/acs.nanolett.1c03438 |
[19] | Junsukhon, A. and Ngaotrakanwiwat, P. (2019) Effect of CuS:WO3 Ratio on the Photochromic Properties of CuS-WO3 Film. Materials Today: Proceedings, 17, 1780-1786. https://doi.org/10.1016/j.matpr.2019.06.212 |
[20] | Wang, L., Liu, Y., Zhan, X., et al. (2019) Photochromic Transparent Wood for Photo-Switchable Smart Window Applications. Journal of Materials Chemistry C, 7, 8649-8654. https://doi.org/10.1039/C9TC02076D |
[21] | Kim, C.W., Santoro, E.G., Pawar, A.U., et al. (2023) Swift Photochromic Smart Window Based on Plasmonic Yolk-Shell Nanophosphors. Advanced Optical Materials, 11, Article ID: 2202171. https://doi.org/10.1002/adom.202202171 |
[22] | Tian, J., Peng, H., Du, X., et al. (2021) Hybrid Thermochromic Microgels Based on UCNPs/PNIPAm Hydrogel for Smart Window with En-Hanced Solar Modulation. Journal of Alloys and Compounds, 858, Article ID: 157725. https://doi.org/10.1016/j.jallcom.2020.157725 |
[23] | Ji, H., Liu, D., Cheng, H., et al. (2018) Vanadium Dioxide Nanopowders with Tunable Emissivity for Adaptive Infrared Camouflage in both Thermal Atmospheric Windows. Solar Energy Materials and Solar Cells, 175, 96-101. https://doi.org/10.1016/j.solmat.2017.10.013 |
[24] | Xu, F., Cao, X., Luo, H., et al. (2018) Recent Advances in VO2-Based Thermochromic Composites for Smart Windows. Journal of Materials Chemistry C, 6, 1903-1919. https://doi.org/10.1039/C7TC05768G |
[25] | Zhang, Z., Zhang, L., Zhou, Y., et al. (2023) Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chemical Reviews, 123, 7025-7080. https://doi.org/10.1021/acs.chemrev.2c00762 |
[26] | Ji, C., Wu, Z., Lu, L., et al. (2018) High Thermochromic Performance of Fe/Mg Co-Doped VO2 Thin Films for Smart Window Applications. Journal of Materials Chemistry C, 6, 6502-6509. https://doi.org/10.1039/C8TC01111G |
[27] | Hao, Q., Li, W., Xu, H., et al. (2018) VO2/TiN Plasmonic Thermochromic Smart Coatings for Room-Temperature Applications. Advanced Materials, 30, Article ID: 1705421. https://doi.org/10.1002/adma.201705421 |
[28] | Cao, X., Chang, T., Shao, Z., et al. (2020) Challenges and Opportunities toward Real Application of VO2-Based Smart Glazing. Matter, 2, 862-881. https://doi.org/10.1016/j.matt.2020.02.009 |
[29] | Chang, T., Zhu, Y., Cao, C., et al. (2021) Multifunctional Flexible Vanadium Dioxide Films. Accounts of Materials Research, 2, 714-725. https://doi.org/10.1021/accountsmr.1c00044 |
[30] | Wang, S., Zhou, Y., Jiang, T., et al. (2021) Thermochromic Smart Windows with Highly Regulated Radiative Cooling and Solar Transmission. Nano Energy, 89, Article ID: 106440. https://doi.org/10.1016/j.nanoen.2021.106440 |
[31] | Demiryont, H. and Moorehead, D. (2009) Electrochromic Emissivity Modulator for Spacecraft Thermal Management. Solar Energy Materials and Solar Cells, 93, 2075-2078. https://doi.org/10.1016/j.solmat.2009.02.025 |
[32] | Tian, Y., Zhang, X., Dou, S., et al. (2017) A Comprehensive Study of Electrochromic Device with Variable Infrared Emissivity Based on Polyaniline Conducting Polymer. Solar Energy Materials and Solar Cells, 170, 120-126. https://doi.org/10.1016/j.solmat.2017.05.053 |
[33] | Chandrasekhar, P., Zay, B.J., Lawrence, D., et al. (2014) Variable-Emittance Infrared Electrochromic Skins Combining Unique Conducting Polymers, Ionic Liquid Electrolytes, Microporous Polymer Membranes, and Semiconductor/Polymer Coatings, for Spacecraft Thermal Control. Journal of Applied Polymer Science, 131, Article No. 40850. https://doi.org/10.1002/app.40850 |
[34] | Jia, Y., Liu, D., Chen, D., et al. (2023) Transparent Dynamic Infrared Emissivity Regulators. Nature Communications, 14, Article No. 5087. https://doi.org/10.1038/s41467-023-40902-w |
[35] | Zeng, S., Shen, K., Liu, Y., et al. (2021) Dynamic Thermal Radiation Modulators via Mechanically Tunable Surface Emissivity. Materials Today, 45, 44-53. https://doi.org/10.1016/j.mattod.2020.12.001 |
[36] | Wang, Y., Ji, H., Chen, Y., et al. (2023) Artificially Adjustable Radiative Cooling Device with Environmental Adaptability. Ceramics International, 49, 40297-40304. https://doi.org/10.1016/j.ceramint.2023.10.002 |
[37] | Guo, R.H., et al. (2022) Phase-Change Materials for Intelligent Temperature Regulation. Materials Today Energy, 23, Article ID: 100888. https://doi.org/10.1016/j.mtener.2021.100888 |
[38] | Cui, Y., Ke, Y., Liu, C., et al. (2018) Thermochromic VO2 for Energy-Efficient Smart Windows. Joule, 2, 1707-1746. https://doi.org/10.1016/j.joule.2018.06.018 |
[39] | Shi, R., Chen, Y., Cai, X., et al. (2021) Phase Management in Single-Crystalline Vanadium Dioxide Beams. Nature Communications, 12, Article No. 4214. https://doi.org/10.1038/s41467-021-24527-5 |
[40] | Liu, D., Ji, H., Peng, R., et al. (2018) Infrared Chameleon-Like Behavior from VO2(M) Thin Films Prepared by Transformation of Metastable VO2(B) for Adaptive Camouflage in both Thermal Atmospheric Windows. Solar Energy Materials and Solar Cells, 185, 210-217. https://doi.org/10.1016/j.solmat.2018.05.042 |
[41] | Li, M., Magdassi, S., Gao, Y., et al. (2017) Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small, 13, Article ID: 1701147. https://doi.org/10.1002/smll.201701147 |
[42] | Chen, Y., Ji, H., Lu, M., et al. (2023) Machine Learning Guided Hydrothermal Synthesis of Thermochromic VO2 Nanoparticles. Ceramics International, 49, 30794-30800. https://doi.org/10.1016/j.ceramint.2023.07.035 |
[43] | Ji, H., Liu, D., Cheng, H., et al. (2019) Large Area Infrared Thermochromic VO2 Nanoparticle Films Prepared by Inkjet Printing Technology. Solar Energy Materials and Solar Cells, 194, 235-243. https://doi.org/10.1016/j.solmat.2019.02.028 |
[44] | Taylor, S., Long, L., Mcburney, R., et al. (2020) Spectrally-Selective Vanadium Dioxide Based Tunable Metafilm Emitter for Dynamic Radiative Cooling. Solar Energy Materials and Solar Cells, 217, Article ID: 110739. https://doi.org/10.1016/j.solmat.2020.110739 |
[45] | Liang, S., Xu, F., Li, W., et al. (2023) Tunable Smart Mid Infrared Thermal Control Emitter Based on Phase Change Material VO2 Thin Film. Applied Thermal Engineering, 232, Article ID: 121074. https://doi.org/10.1016/j.applthermaleng.2023.121074 |
[46] | Xie, B., Zhang, W., Zhao, J., et al. (2022) VO2-Based Superposed Fabry-Perot Multilayer Film with a Highly Enhanced Infrared Emittance and Emittance Tunability for Spacecraft Thermal Control. Optics Express, 30, 34314-34327. https://doi.org/10.1364/OE.464266 |
[47] | Wang, H., Yang, Y. and Wang, L. (2014) Wavelength-Tunable Infrared Metamaterial by Tailoring Magnetic Resonance Condition with VO2 Phase Transition. Journal of Applied Physics, 116, Article ID: 123503. https://doi.org/10.1063/1.4896525 |
[48] | Yan, C., Wang, Z., Qu, J., et al. (2023) Scalable and Dynamically Passive Thermal Regulation over Solar Wavelengths Enabled by Phase-Transition Metamaterials. Solar Energy, 257, 257-265. https://doi.org/10.1016/j.solener.2023.04.032 |
[49] | Wang, X., Chen, L., Lu, H., et al. (2021) Enhancing Visible-Light Transmittance While Reducing Phase Transition Temperature of VO2 by Hf-W Co-Doping. Applied Physics Letters, 118, Article ID: 192102. https://doi.org/10.1063/5.0044516 |
[50] | Zhao, Y., Ji, H., Ou, Y., et al. (2024) Novel Sunlight-Driven Cu7S4/VO2 Composite Films for Smart Windows. Journal of Materials Chemistry C, 12, 2534-2543. https://doi.org/10.1039/D3TC03774F |
[51] | Zhu, J., Huang, A., Ma, H., et al. (2016) Composite Film of Vanadium Dioxide Nanoparticles and Ionic Liquid-Nickel-Chlorine Complexes with Excellent Visible Thermochromic Performance. ACS Applied Materials & Interfaces, 8, 29742-29748. https://doi.org/10.1021/acsami.6b11202 |
[52] | Ji, H., Zhao, Y., Lu, M., et al. (2023) Novel Warm/Cool-Tone Switchable VO2-Based Smart Window Composite Films with Excellent Optical Performance. Ceramics International, 49, 22630-22635. https://doi.org/10.1016/j.ceramint.2023.04.073 |
[53] | Xu, F., Cao, X., Shao, Z., et al. (2019) Highly Enhanced Thermochromic Performance of VO2 Film Using “Movable” Antireflective Coatings. ACS Applied Materials & Interfaces, 11, 4712-4718. https://doi.org/10.1021/acsami.8b20794 |
[54] | Pu, J., Shen, C., Lu, L., et al. (2024) Ammonia Powered Thermal-Responsive Smart Window with Spectral Regulation of Cu2 and Sodium Copper Chlorophyllin. Energy Conversion and Management, 299, Article ID: 117815. https://doi.org/10.1016/j.enconman.2023.117815 |
[55] | Wang, S., Jiang, T., Meng, Y., et al. (2021) Scalable Thermochromic Smart Windows with Passive Radiative Cooling Regulation. Science, 374, 1501-1504. https://doi.org/10.1126/science.abg0291 |
[56] | Ke, Y., Li, Y., Wu, L., et al. (2022) On-Demand Solar and Thermal Radiation Management Based on Switchable Interwoven Surfaces. ACS Energy Letters, 7, 1758-1763. https://doi.org/10.1021/acsenergylett.2c00419 |