|
药物和个人护理产品分析检测方法研究进展
|
Abstract:
药物和个人护理产品(Pharmaceutical and Personal Care Products, PPCPs)是一种新兴污染物,在日常生活中被广泛使用,导致它们可以通过污水排放、废水处理不完全、医疗废物处理等途径进入环境中,对生态系统和人类健康产生负面影响。因此,为了保护和人类健康,对PPCPs的分析检测方法的研究为环境监测和保护提供了重要支持。本文综述了PPCPs各类检测方法的研究进展,包括介绍了PPCPs的危害,对其检测的方法以及各种检测方法的优缺点,并对未来发展进行展望。
Pharmaceuticals and personal care products (PPCPs) are emerging pollutants that are widely used in daily life, leading to the fact that they can enter the environment through sewage discharge, incomplete wastewater treatment, and medical waste disposal, negatively affecting ecosystems and human health. Therefore, in order to protect human health, the study of analytical detection methods for PPCPs provides important support for environmental monitoring and protection. This paper reviews the research progress of various detection methods for PPCPs, including an introduction to the hazards of PPCPs, the methods for their detection and the advantages and disadvantages of various detection methods, as well as an outlook on the future development.
[1] | Carball, M., Omil, F., Lema, J.M., et al. (2004) Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage Treatment Plant. Water Research, 38, 2918-2926. https://doi.org/10.1016/j.watres.2004.03.029 |
[2] | 王竞茵, 蔡海振, 荣宏伟, 等. 不同PPCPs浓度对活性污泥系统微生物毒性的影响[J]. 中国给水排水, 2023, 39(23): 104-110. |
[3] | 张照荷, 陈典, 赵微, 等. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展[J]. 岩矿测试, 2023, 42(4): 649-666. |
[4] | 李雯雯, 李高清, 范黎明, 等. 长江口及其毗邻区域中PPCPs研究进展[J].环境保护, 2022, 50(20): 44-50. |
[5] | 江静, 周清时. 水环境中PPCPs的危害与分析检测方法研究进展[J]. 皮革制作与环保科技, 2021, 2(6): 62-63. |
[6] | 朱金浩, 张戈, 陈思宇, 等. 污水中PPCPs处理技术的研究进展[J]. 应用化工, 2024, 53(1): 190-194, 199. |
[7] | Zhang, X.L., Jing, Y., Ma, L., et al. (2015) Occurrence and Transport of Synthetic Musks in Paired Maternal Blood, Umbilical Cord Blood, and Breast Milk. International Journal of Hygiene and Environmental Health, 218, 99-106. https://doi.org/10.1016/j.ijheh.2014.08.005 |
[8] | 何林. 典型PPCPs污染物在水体中氧化降解的实验与理论研究[D]: [博士学位论文]. 济南: 山东大学, 2017: 1-103. |
[9] | 李菊, 谢建军, 黄雪琳, 等. 人造麝香的危害性及其残留检测方法研究进展[J].理化检验(化学分册), 2015, 51(2): 272-276. |
[10] | Ying, G.G., He, L.Y., et al. (2017) China Must Reduce Its Antibiotic Use. Environmental Science & Technology, 51, 1072-1073. https://doi.org/10.1021/acs.est.6b06424 |
[11] | Bojarski, B., Kot, B. and Witeska, M. (2020) Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals, 13, Article 189. https://doi.org/10.3390/ph13080189 |
[12] | Hu, X.G., Zhou, Q.X. and Luo, Y. (2010) Occurrence and Source Analysis of Typical Veterinary Antibiotics in Manure, Soil, Vegetables and Groundwater from Organic Vegetable Bases, Northern China. Environmental Pollution, 158, 2992-2998. https://doi.org/10.1016/j.envpol.2010.05.023 |
[13] | 尹美琳, 张嘉琪, 冯炘, 等. PPCPs类微量污染物去除的研究进展[J]. 应用化工, 2020, 49(2): 462-465. |
[14] | 郎杭, 赵晓辉. 环境抗生素类药物污染物定性定量检测方法研究进展[C]//中国水利学会. 2023中国水利学术大会论文集(第六分册). 郑州: 黄河水利出版社, 2023: 4. |
[15] | Aznar, R., Sanchez-Brunete, C., Albero, B., Antonio Rodriguez, J. and Tadeo, J.L. (2014) Occurrence and Analysis of Selected Pharmaceutical Compounds in Soil from Spanish Agricultural Fields. Environmrntal Science and Pollution Research, 21, 4772-4782. https://doi.org/10.1007/s11356-013-2438-7 |
[16] | Kumirska, J., Lukaszewicz, P., Caban, M., et al. (2019) Determination of Twenty Pharmaceutical Contaminants in Soil Using Ultrasound-Assisted Extraction with Gas Chromatography-Mass Spectrometric Detection. Chemosphere, 232, 232-242. https://doi.org/10.1016/j.chemosphere.2019.05.164 |
[17] | 张鹏, 李宽, 周进, 韩玮娜, 和永瑞. 新型3D色谱固定相结合气相色谱-质谱法测定染发剂中多种限用和禁用成分[J/OL]. 色谱, 2024: 1-6. http://kns.cnki.net/kcms/detail/21.1185.O6.20240329.1514.002.html, 2024-05-29. |
[18] | Tanoue, R., Nozaki, K., Nomiyama, K., et al. (2020) Rapid Analysis of 65 Pharmaceuticals and 7 Personal Care Products in Plasma and Whole-Body Tissue Samples of Fish Using Acidic Extraction, Zirconia-Coated Silica Cleanup, and Liquid Chromatography-Tandem mass Spectrometry. Journal of Chromatography A, 1631, Article ID: 461586. https://doi.org/10.1016/j.chroma.2020.461586 |
[19] | 刘娴静, 梁存珍, 肖本益, 等. 高效液相色谱-串联质谱法同时检测水体中26种药物及个人护理品[J]. 环境化学, 2021, 40(2): 549-558. |
[20] | 曾永福, 陈美芳, 邵雨, 等. 植物中27种典型药品及个人护理品多残留检测方法的建立及其在芽苗菜中迁移规律的分析[J]. 色谱, 2023, 41(5): 386-396. |
[21] | Zhang, Y.Q., Lin, L.F., Li, Y., et al. (2021) Determination of 38 Pharmaceuticals and Personal Care Products in Water by Lyophilization Combined with Liquid Chromatography-Tandem Mass Spectrometry. Aanlytical Methods, 13, 299-310. https://doi.org/10.1039/D0AY02022B |
[22] | Sunyer-Caldu, A. and Diaz-Cruz, M.S. (2021) Development of a QuEChERS-Based Method for the Analysis of Pharmaceuticals and Personal Care Products in Lettuces Grown in Field-Scale Agricultural Plots Irrigated with Reclaimed Water. Talanta, 230, Article ID: 122302. https://doi.org/10.1016/j.talanta.2021.122302 |
[23] | 孙慧婧, 张蓓蓓, 崔冬妮, 等. 超高效液相色谱-三重四极杆质谱法测定水中11大类145种药品和个人护理品[J]. 色谱, 2024, 42(1): 24-37. |
[24] | 李瑞. 金属纳米复合材料修饰电化学传感器在疾病标记物和药物中的应用[D]: [硕士学位论文]. 广州: 广东药科大学, 2021. |
[25] | Vajdle, O., Sekuljica, S., Guzsvany, V., Nagy, L., et al. (2020) Use of Carbon Paste Electrode and Modified by Gold Nanoparticles for Selected Macrolide Antibiotics Determination as Standard and in Pharmaceutical Preparations. Journal of Electroanalytical Chemistry, 873, Article ID: 114324. https://doi.org/10.1016/j.jelechem.2020.114324 |
[26] | Pan, Y., Shan, D., Ding, L.L., et al. (2021) Developing a Generally Applicable Electrochemical Sensor for Detecting Macrolides in Water with Thiophene-Based Molecularly Imprinted Polymers. Water Research, 205, Article ID: 117670. https://doi.org/10.1016/j.watres.2021.117670 |
[27] | Wang, J.H., Liang, R.N. and Qin, W. (2020) Molecularly Imprinted Polymer-Based Potentiometric Sensors. TrAC Trends in Analytical Chemistry, 130, Article ID: 115980. https://doi.org/10.1016/j.trac.2020.115980 |
[28] | 伍永梅, 朱肖倩, 方娇, 白艳红. 基于改进G-四链体DNA酶的电化学适配体传感器构建及卡那霉素高灵敏检测[J]. 轻工学报, 2023, 38(6): 62-69. |
[29] | Valimana-traverso, J., Amariei, G., et al. (2019) Enantiomer Stability and Combined Toxicity of Duloxetine and Econazole on Daphnia Magna Using Real Concentrations Determined by Capillary Electrophoresis. Science of the Total Environment, 670, 770-778. https://doi.org/10.1016/j.scitotenv.2019.03.208 |
[30] | 李兴华, 李甜, 段婕, 石红梅. 高效毛细管电泳-紫外检测法快速分离测定三种抗肿瘤药物[J]. 化学研究与应用, 2019, 31(4): 753-758. |
[31] | Li, X.H., Yang, Y.Q., Miao, J.J., et al. (2020) Determination of Sulfa Antibiotic Residues in River and Particulate Matter by Field-Amplified Sample Injection-Capillary Zone Electrophoresis. Electrophoresis, 41, 1584-1591. https://doi.org/10.1002/elps.202000122 |
[32] | 李兴华. 环境水体中β-内酰胺类抗生素的毛细管电泳检测新方法研究[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2020. |
[33] | 罗小青, 黄文礼, 王彬旭, 等. 基于石墨烯超表面天线的太赫兹动态相位调控及波束扫描[J]. 集成技术, 2023, 12(4): 77-90. |
[34] | Kawase, K., Ogawa, Y., Watanabe, Y. and Inoue, H. (2003) Non-Destructive Terahertz Imaging of Illicit Drugs Using Spectral Fingerprints. Optics Express, 11, 2549-2554. https://doi.org/10.1364/OE.11.002549 |
[35] | Ho, L., Pepper, M. and Taday, P. (2008) Terahertz Spectroscopy Signatures and Fingerprints. Nature Photonics, 2, 541-543. https://doi.org/10.1038/nphoton.2008.174 |
[36] | Guo, J., Deng, H., Liu, Q.C., et al. (2020) A Reliable Method for Identification of Antibiotics by Terahertz Spectroscopy and SVM. Journal and Spectroscopy, 2020, Article ID: 8811467. https://doi.org/10.1155/2020/8811467 |
[37] | 袁婷婷, 吴靖文, 薄艳华, 等. 基于太赫兹超表面传感器的硝基呋喃类药物痕量检测[J]. 光学学报, 2023, 43(7): 171-179. |
[38] | Li, B., Bai, J.P. and Zhang, S.J. (2021) Low Concentration Noroxin Detection Using Terahertz Spectroscopy Combined with Metamaterial. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 247, Article ID: 119101. https://doi.org/10.1016/j.saa.2020.119101 |
[39] | Liang, L.J., Cao, X., Zhang, Y.G., et al. (2024) Graphene and Gold Nanoparticles Integrated Terahertz Metasurface for Improved Sensor Sensitivity. Physica E: Low-Dimensional Systems and Nanostructures, 156, Article ID: 115842. https://doi.org/10.1016/j.physe.2023.115842 |
[40] | Zhou, R.Y., Wang, C., Huang, Y.X., et al. (2021) Label-Free Terahertz Microfluidic Biosensor for Sensitive DNA Detection Using Graphene-Metasurface Hybrid Structures. Biosensors and Bioelectronics, 188, Article ID: 113336. https://doi.org/10.1016/j.bios.2021.113336 |
[41] | Rodrigo, D., Limaj, O., Janner, D., et al. (2015) Mid-Infrared Plasmonic Biosensing with Graphene. Science, 349, 165-168. https://doi.org/10.1126/science.aab2051 |
[42] | Wu, G.F., Wang, W., Zhang, R., et al. (2023) Metamaterial Graphene Sensors for the Detection of Two Food Additives. Optics Express, 31, 32162-32171. https://doi.org/10.1364/OE.498639 |
[43] | Xu, W.D., Hang, X.Y., Zhou, R.Y., et al. (2020) Metamaterial-Free Flexible Graphene-Enabled Terahertz Sensors for Pesticide Detection at Bio-Interface. ACS Applied Materials & Interfaces, 12, 44281-44287. https://doi.org/10.1021/acsami.0c11461 |
[44] | Lang, T.T., Xiao, M.Y. and Cen, W.Y. (2023) Graphene-Based Metamaterial Sensor for Pesticide Trace Detection. Biosensors-Basel, 13, Article 560. https://doi.org/10.3390/bios13050560 |
[45] | Yang, M.S., Yao, H.Y., Lu, Y.Y., et al. (2022) Graphene-Integrated Toroidal Resonance Metasurfaces Used for Picogram-Level Detection of Chlorothalonil in the Terahertz Region. Optics Express, 30, 34034-34042. https://doi.org/10.1364/OE.464346 |
[46] | Xiao, M.Y., Lang, T.T., Ren, Z., et al. (2022) Flexible Graphene-Based Metamaterial Sensor for Highly Sensitive Detection of Bovine Serum Albumin. Applied Optics, 61, 10574-10581. https://doi.org/10.1364/AO.476391 |
[47] | Lee, S.H., Choe, J.H., Kim, C., et al. (2020) Graphene Assisted Terahertz Metamaterials for Sensitive Bio-Sensing. Sensors and Actuators B: Chemical, 310, Article ID: 127841. https://doi.org/10.1016/j.snb.2020.127841 |
[48] | Xu, R.C., Bing, P.B., Yan, X., et al. (2023) Graphene-Assisted Electromagnetically Induced Transparency-Like Terahertz Metabiosensor for Ultra-Sensitive Detection of Ovalbumin. Photonics, 10, Article 67. https://doi.org/10.3390/photonics10010067 |