全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于钙钛矿光刻胶纳米复合材料的热光刻技术
Thermal Lithography Technology Based on Perovskite Photoresist Nanocomposites

DOI: 10.12677/japc.2024.132022, PP. 185-193

Keywords: 钙钛矿量子点,光刻胶,荧光效应,折射率调制,紫外光刻
Perovskite Quantum Dots
, Photoresist, Fluorescence Effect, Refractive Index Modulation, UV Lithography

Full-Text   Cite this paper   Add to My Lib

Abstract:

钙钛矿量子点因其具有高荧光发光效率、窄荧光发射峰、荧光发光波长可调控等一系列优良光学特性,被广泛应用在光电探测、照明显示、激光等领域。为了满足实现快速且简便地大面积制备钙钛矿发光器件的制备要求,提出并实现了一种基于掺杂CsPbBr3钙钛矿前驱体的含锆有机–无机光刻胶材料热光刻蚀技术。复合材料旋涂制成复合薄膜后,研究了温度对薄膜内钙钛矿前驱体形成发光量子点以及温度对薄膜材料折射率的影响,当温度从30℃到110℃不断升高时,钙钛矿前驱体逐渐结晶成发光量子点,在503 nm波长附近处出现窄带宽(半峰宽~25 nm)的优秀荧光效应;以及在波长范围438 nm~510 nm的可见光波段,实现最大0.014的折射率调制。最后,通过对复合薄膜材料进行掩膜紫外光刻,实现了厘米量级的钙钛矿量子点绿光发光带,证明了材料具有优异的光刻性能,为新一代发光器件提供一种材料与热光刻蚀技术方案。
Perovskite quantum dots have been widely applied in optoelectronic detection, illumination display, lasers, and other fields due to their high fluorescence luminous efficiency, narrow fluorescence emission peaks, and tunable fluorescence wavelengths, among a range of excellent optical characteristics. In order to meet the requirements of realizing fast and easy large-area fabrication of perovskite light-emitting devices, thermal-UV lithography of CsPbBr3 perovskite precursors doped nanocomposites photoresist was proposed and implemented. The temperature effect on the formation of luminescent quantum dots from the perovskite precursor in the spin-coated film and the refractive index of the film material were investigated, after the composite material is spin coated into a composite film. It can be found that as the temperature continuously increased from 30?C to 110?C, the perovskite precursor gradually crystallized into luminescent quantum dots, achieving an excellent fluorescence effect with a narrow bandwidth (FWHM~25 nm) near the wavelength of 503 nm and a maximum refractive index modulation of 0.014 in the visible light wavelength range of 438 nm~510 nm. Finally, centimeter level green light emission strips of perovskite quantum dots by the UV lithography of composite thin films were achieved. It proves that the material has excellent lithography performance, and provides a material and thermo-optical etching technology solution for a new generation of light-emitting devices.

References

[1]  Jiang, L., Peng, Y., Xiang, T., et al. (2022) A Counter Electrode Modified with Renewable Carbonized Biomass for an All-Inorganic CsPbBr3 Perovskite Solar Cell. Journal of Alloys and Compounds, 902, Article 163725.
https://doi.org/10.1016/j.jallcom.2022.163725
[2]  曾海波, 董宇辉. 钙钛矿量子点: 机遇与挑战[J]. 发光学报, 2020, 41(8): 940-944.
[3]  贾潜伟, 徐公杰. 基于二维钙钛矿的复合型白光LED研究[J]. 光学仪器, 2023, 45(6): 42-51.
[4]  Mao, L.B., Xiao, Y., Liu, H., et al. (2023) Water-Stable CsPbBr3/Reduced Graphene Oxide Nanoscrolls for High-Performance Photoelectrochemical Sensing. Advanced Functional Materials, 33, Article 2213814.
https://doi.org/10.1002/adfm.202213814
[5]  Liang, S.-Y., Liu, Y.-F., Wang, S.-Y., et al. (2022) High-Resolution Patterning of 2D Perovskite Films through Femtosecond Laser Direct Writing. Advanced Functional Materials, 32, Article 0224957.
https://doi.org/10.1002/adfm.202204957
[6]  Liu, D., Weng, K.K., Lu, S.Y., et al. (2022) Direct Optical Patterning of Perovskite Nanocrystals with Ligand Cross-Linkers. Science Advances, 8, Article eabm8433.
https://doi.org/10.1126/sciadv.abm8433
[7]  Wang, Y., Lv, Z.Y., Chen, J.R., et al. (2018) Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing. Advanced Materials, 30, Article 1802883.
https://doi.org/10.1002/adma.201802883
[8]  Bai, Y., Hao, M.M., Ding, S.S., et al. (2022) Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. Advanced Materials, 34, Article 2105958.
https://doi.org/10.1002/adma.202105958
[9]  Choi, J.W., Woo, H.C., Huang, X.G., et al. (2018) Organic-Inorganic Hybrid Perovskite Quantum Dots with High PLQY and Enhanced Carrier Mobility through Crystallinity Control by Solvent Engineering and Solid-State Ligand Exchange. Nanoscale, 10, 13356-13367.
https://doi.org/10.1039/C8NR00806J
[10]  Du, X.F., Wu, G., Cheng, J., et al. (2017) High-Quality CsPbBr3 Perovskite Nanocrystals for Quantum Dot Light-Emitting Diodes. RSC Advances, 7, 10391-10396.
https://doi.org/10.1039/C6RA27665B
[11]  Wang, Z.T., Fu, R., Li, F., et al. (2021) One-Step Polymeric Melt Encapsulation Method to Prepare CsPbBr3 Perovskite Quantum Dots/Polymethyl Methacrylate Composite with High Performance. Advanced Functional Materials, 31, Article 2010009.
https://doi.org/10.1002/adfm.202010009
[12]  Leng, M.Y., Yang, Y., Zeng, K., et al. (2018) All-Inorganic Bismuth-Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability. Advanced Functional Materials, 28, Article 1704446.
https://doi.org/10.1002/adfm.201704446
[13]  Brown, A.A.M., Vashishtha, P., Hooper, T.J.N., et al. (2021) Precise Control of CsPbBr3 Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. Chemistry of Materials, 33, 2387-2397.
https://doi.org/10.1021/acs.chemmater.0c04569
[14]  Pan, J.-A., Ondry, J.C. and Talapin, D.V. (2021) Direct Optical Lithography of CsPbX3 Nanocrystals via Photoinduced Ligand Cleavage with Postpatterning Chemical Modification and Electronic Coupling. Nano Letters, 21, 7609-7616.
https://doi.org/10.1021/acs.nanolett.1c02249
[15]  Rainò, G., Yazdani, N., Boehme, S.C., et al. (2022) Ultra-Narrow Room-Temperature Emission from Single CsPbBr3 Perovskite Quantum Dots. Nature Communications, 13, Article No. 2587.
https://doi.org/10.1038/s41467-022-30016-0
[16]  Sun, K., Tan, D.Z., Fang, X.Y., et al. (2022) Three-Dimensional Direct Lithography of Stable Perovskite Nanocrystals in Glass. Science, 375, 307-310.
https://doi.org/10.1126/science.abj2691
[17]  Huang, X.J., Guo, Q., Yang, D., et al. (2020) Reversible 3D Laser Printing of Perovskite Quantum Dots inside a Transparent Medium. Nature Photonics, 14, 82-88.
https://doi.org/10.1038/s41566-019-0538-8
[18]  Dieleman, C.D., Van der Burgt, J., Thakur, N., et al. (2022) Direct Patterning of CsPbBr3 Nanocrystals via Electron-Beam Lithography. ACS Applied Energy Materials, 5, 1672-1680.
https://doi.org/10.1021/acsaem.1c03091
[19]  Yun, J.H., Kim, J.S., Yang, M.Y., et al. (2017) Low-Cost Laser Printable Photomask: One-Step, Photoresist-Free, Fully Solution Processed High-Grade Photolithography Mask. Applied Surface Science, 394, 466-471.
https://doi.org/10.1016/j.apsusc.2016.10.134
[20]  Luo, C.Y., Xu, C.C., Lv, L., et al. (2020) Review of Recent Advances in Inorganic Photoresists. RSC Advances, 10, 8385-8395.
https://doi.org/10.1039/C9RA08977B
[21]  Joyce, R., Panwar, D.K., Shakil, M., et al. (2018) Single Layer Thin Photoresist Soft Etch Mask for MEMS Applications. Microsystem Technologies, 24, 2277-2285.
https://doi.org/10.1007/s00542-017-3609-0
[22]  Zheng, W., Huang, P., Gong, Z.L., et al. (2018) Near-Infrared-Triggered Photon Upconversion Tuning in All-Inorganic Cesium Lead Halide Perovskite Quantum Dots. Nature Communications, 9, Article No. 3462.
https://doi.org/10.1038/s41467-018-05947-2
[23]  Du, P.P., Li, J.H., Wang, L., et al. (2021) Efficient and Large-Area All Vacuum-Deposited Perovskite Light-Emitting Diodes via Spatial Confinement. Nature Communications, 12, Article No. 4751.
https://doi.org/10.1038/s41467-021-25093-6
[24]  Liao, M.L., Shan, B.B. and Li, M. (2019) In situ Raman Spectroscopic Studies of Thermal Stability of All-Inorganic Cesium Lead Halide (CsPbX3, X=Cl, Br, I) Perovskite Nanocrystals. The Journal of Physical Chemistry Letters, 10, 1217-1225.
https://doi.org/10.1021/acs.jpclett.9b00344
[25]  Liang, T.Y., Liu, W.J., Liu, X.Y., et al. (2021) Fabry-Perot Mode-Limited High-Purcell-Enhanced Spontaneous Emission from in situ Laser-Induced CsPbBr3 Quantum Dots in CsPb2Br5 Microcavities. Nano Letters, 22, 355-365.
https://doi.org/10.1021/acs.nanolett.1c04025
[26]  Tamming, R.R., Butkus, J., Price, M.B., et al. (2019) Ultrafast Spectrally Resolved Photoinduced Complex Refractive Index Changes in CsPbBr3 Perovskites. ACS Photonics, 6, 345-350.
https://doi.org/10.1021/acsphotonics.9b00091
[27]  Zanutta, A., Orselli, E., F?cke, T., et al. (2016) Photopolymeric Films with Highly Tunable Refractive Index Modulation for High Precision Diffractive Optics. Optical Materials Express, 6, 252-263.
https://doi.org/10.1364/OME.6.000252
[28]  叶英, 王明忠, 崔秀珍, 等. 玻璃中铯铅卤钙钛矿纳米晶热历史对其结构与光学性能的影响研究[J]. 激光与光电子学进展, 2022, 59(15): 55-59.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133