全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Galt基因编辑小鼠的肠道菌群分析
Analysis of Gut Microbiota in Galt Editing Mice

DOI: 10.12677/hjmce.2024.122019, PP. 166-174

Keywords: 肠道菌群,16S rRNA基因测序,Galt,功能差异分析
Intestinal Flora
, 16S rRNA Gene Sequencing, Galt, Functional Difference Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:本研究旨在分析半乳糖-1-磷酸尿苷转移酶(Galactose-1-Phosphateuridylyltransferase, Galt)基因编辑后对小鼠肠道菌群的影响。方法:基于前期构建的Galt基因编辑小鼠模型,通过16S rRNA基因测序技术,对比野生型(Wild type, WT)和Galt基因编辑小鼠肠道内容物中的菌群组成。结果:结果显示,Galt基因编辑小鼠肠道菌群多样性下降,菌群丰富度减少;物种组成也发生显著性变化。Galt基因编辑组中厚壁菌门占比由69.836%降低45.096%,拟杆菌门占比由15.824%增加到37.672%,变形菌门的相对丰度由1.82%增加到13.175%,脱硫弧菌门的相对丰度由5.42%降低到0.36%。在属水平上,未分类的木楠科属和嗜冷杆菌属相对丰度在Galt基因编辑组中上调,萄球菌属和脱硫弧菌属在WT组中上调。进一步对两组小鼠KEGG功能差异分析,结果显示小鼠碳水化合物运输和代谢,能量产生和转化,氨基酸运输和代谢以及与复制,重组和修复相关的基因方面等功能上存在差异。结论:Galt基因编辑对小鼠肠道菌群的丰富度、组成和功能有影响。
Objective: The purpose of this study was to analyze the effect of Galactose-1-phosphateuridylyltransferase gene knockout on intestinal flora in mice. Methods: The Galt mouse model was constructed by CRISPR/Cas9 technology. The composition of gut microbiota in WT group and Galt group was compared by 16S rRNA gene sequencing. Results: The diversity of intestinal flora decreased, and the richness of flora decreased. At the phylum level, the proportion of Firmicutes and Desulfovibrio in the Galt group decreased, and the proportion of Bacteroidetes and Proteobacteria increased. At the genus level, the relative abundance of unclassified Photinia and Psychrobacter was up-regulated in the Galt group, and the relative abundance of Staphylococcus and Desulfovibrio was up-regulated in the WT group. Further analysis of KEGG functional differences between the two groups of mice showed that there were differences in carbohydrate transport and metabolism, energy production and transformation, amino acid transport and metabolism, and replication in mice. Conclusion: GALT gene knockout affects the richness, composition and function of intestinal flora in mice.

References

[1]  Barrett, K.E. and Wu, G.D. (2017) Influence of the Microbiota on Host Physiology—Moving beyond the Gut. The Journal of Physiology, 595, 433-435.
https://doi.org/10.1113/JP273451
[2]  Okubo, H., Nakatsu, Y., et al. (2018) Gut Microbiota as a Therapeutic Target for Metabolic Disorders. Current Medicinal Chemistry, 25, 984-1001.
https://doi.org/10.2174/0929867324666171009121702
[3]  Franco-Lopez, J., Duplessis, M., Bui, A., et al. (2020) Correlations between the Composition of the Bovine Microbiota and Vitamin B12 Abundance. MSystems, 5, E00107-20.
https://doi.org/10.1128/mSystems.00107-20
[4]  Inagaki, T., Moschetta, A., Lee, Y.K., et al. (2006) Regulation of an Tibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences of the United States of America, 103, 3920-3925.
https://doi.org/10.1073/pnas.0509592103
[5]  Zheng, D., Liwinski, T. and Elinav, E. (2020) Interaction between Microbiota and Immunity in Health and Disease. Cell Research, 30, 492-506.
https://doi.org/10.1038/s41422-020-0332-7
[6]  Bger, M., Leeuwen, S., Bueren, A., et al. (2019) Structural Identity of Galactooligosaccharide Molecules Selectively Utilized by Single Cultures of Probiotic Bacterial Strains. Journal of Agricultural Food Chemistry, 67, 13969-13977.
https://doi.org/10.1021/acs.jafc.9b05968
[7]  Quinn, E.M., Joshi, L. and Hickey, R.M. (2020) Symposium Review: Dairy-Derived Oligosaccharides—Their Influence on Host-Microbe Interactions in the Gastrointestinal Tract of Infants. Journal of Dairy Science, 103, 3816-3827.
https://doi.org/10.3168/jds.2019-17645
[8]  Thomson, P., Medina, D.A., Garrido, D., et al. (2017) Human Milk Oligosaccharides and Infant Gut Bifidobacteria: Molecular Strategies for Their Utilization. Food Microbiology, 75, 37-46.
https://doi.org/10.1016/j.fm.2017.09.001
[9]  Lai, K., Elsas, L.J. and Wierenga, K.J. (2009) Galactose Toxicity in Animals. IUBMB Life, 61, 1063-1074.
https://doi.org/10.1002/iub.262
[10]  Waisbren, S.E., Tran, C., Demirbas, D., et al. (2021) Transient Developmental Delays in Infants with Duarte-2 Variant Galactosemia. Molecular Genetics and Metabolism, 134, 132-138.
https://doi.org/10.1016/j.ymgme.2021.07.009
[11]  Riehman, K., Crews, C. and Fridovich-Keil, J.L. (2001) Relationship between Genotype, Activity, and Galactose Sensitivity in Yeast Expressing Patient Alleles of Human Galactose-1-Phosphate Uridylyltransferase. Journal of Biological Chemistry, 276, 10634-10640.
https://doi.org/10.1074/jbc.M009583200
[12]  Leslie, N.D., Yager, K.L., Mcnamara, P.D., et al. (1996) A Mouse Model of Galactose-1-Phosphate Uridyl Transferase Deficiency. Biochemistry and Molecular Medicine, 59, 7-12.
https://doi.org/10.1006/bmme.1996.0057
[13]  Welling, L., Bernstein, L.E., Berry, G.T., et al. (2017) International Clinical Guideline for the Management of Classical Galactosemia: Diagnosis, Treatment, and Follow-Up. Journal of Inherited Metabolic Disease, 40, 171-176.
https://doi.org/10.1007/s10545-016-9990-5
[14]  Demirbas, D., Coelho, A.I., Rubio-Gozalbo, M.E., et al. (2018) Hereditary Galactosemia. Metabolism, 83, 188-196.
https://doi.org/10.1016/j.metabol.2018.01.025
[15]  Timson, D.J. (2016) The Molecular Basis of Galactosemia—Past, Present and Future. Gene, 589, 133-141.
https://doi.org/10.1016/j.gene.2015.06.077
[16]  Abdulla, O.A., Neamah, W., Sultan, M., et al. (2021) The Ability of AhR Ligands to Attenuate Delayed Type Hypersensitivity Reaction Is Associated with Alterations in the Gut Microbiota. Frontiers in Immunology, 12, Article ID: 684727.
https://doi.org/10.3389/fimmu.2021.684727
[17]  Gu, S., Yang, D., Liu, C., et al. (2023) The Role of Probiotics in Prevention and Treatment of Food Allergy. Food Science and Human Wellness, 12, 681-690.
https://doi.org/10.1016/j.fshw.2022.09.001
[18]  Toneatti, D.M., Albarracín, V.H., Flores, M.R., et al. (2017) Stratified Bacterial Diversity along Physico-Chemical Gradients in High-Altitude Modern Stromatolites. Frontiers in Microbiology, 8, Article No. 646.
https://doi.org/10.3389/fmicb.2017.00646
[19]  Bello-Gil, D., Audebert, C., Olivera-Ardid, S., Pérez-Cruz, M., et al. (2019) The Formation of Glycan-Specific Natural Antibodies Repertoire in Galt Gene Editing Mice Is Determined by Gut Microbiota. Frontiers in Immunology, 10, Article No. 342.
https://doi.org/10.3389/fimmu.2019.00342
[20]  Furet, J.P., Firmesse, O., Gourmelon, M., et al. (2009) Comparative Assessment of Human and Farm Animal Faecal Microbiota Using Real-Time Quantitative PCR. FEMS Microbiology Ecology, 68, 351-362.
https://doi.org/10.1111/j.1574-6941.2009.00671.x
[21]  Sun, Y., Zhang, S., Nie, Q., et al. (2023) Gut Firmicutes: Relationship with Dietary Fiber and Role in Host Homeostasis. Critical Reviews in Food Science and Nutrition, 63, 12073-12088.
https://doi.org/10.1080/10408398.2022.2098249
[22]  Song, H., Wang, W., Shen, B., et al. (2018) Pretreatment with Probiotic Bifico Ameliorates Colitis-Associated Cancer in Mice: Transcriptome and Gut Flora Profiling. Cancer Science, 109, 666-677.
https://doi.org/10.1111/cas.13497
[23]  Frohman, E.M., Racke, M.K. and Raine, C.S. (2006) Multiple Sclerosis—The Plaque and Its Pathogenesis. The New England Journal of Medicine, 354, 942-955.
https://doi.org/10.1056/NEJMra052130
[24]  Askari, H., Shojaei-Zarghani, S., Raeis-Abdollahi, E., et al. (2023) The Role of Gut Microbiota in Inflammatory Bowel Disease—Current State of the Art. Mini-Reviews in Medicinal Chemistry, 23, 1376-1389.
https://doi.org/10.2174/1389557522666220914093331
[25]  Lu, H.P., Wang, Y.B., Huang, S.W., et al. (2012) Metagenomic Analysis Reveals a Functional Signature for Biomass Degradation by Cecal Microbiota in the Leaf-Eating Flying Squirrel (Petaurista alborufus Lena). BMC Genomics, 13, Article No. 466.
https://doi.org/10.1186/1471-2164-13-466
[26]  Wei, F., Xu, H., Yan, C., et al. (2019) Changes of Intestinal Flora in Patients with Systemic Lupus Erythematosus in Northeast China. PLOS ONE, 14, e0213063.
https://doi.org/10.1371/journal.pone.0213063
[27]  Na, R.S., Tae, W.W. and Jin, W.B. (2015) Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends in Biotechnology, 33, 496-503.
https://doi.org/10.1016/j.tibtech.2015.06.011

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413