全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于镍络合物衍生的非金属元素掺杂材料用于电解水研究
Research on Non-Metallic Element Doped Materials Derived from Nickel Complexes for Electrolytic Water Splitting

DOI: 10.12677/japc.2024.132033, PP. 284-289

Keywords: 镍络合物,非金属掺杂,电解水,氢能
Nickel Complexes
, Non-Metallic Doping, Electrocatalytic Water Splitting, Hydrogen Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着石油危机的日益严重和人们对碳排放问题的日渐关注,氢能作为一种绿色、高效的清洁能源正逐步成为传统化石燃料的替代品。在众多制备氢能的科学方法中,电解水制氢以其环境友好、高能效、适应性强和可持续发展等显著特性脱颖而出,对于推动能源结构的转型和实现碳中和目标具有积极作用。因此研究出高效、低成本的电解水催化剂势在必行。本文通过研究以镍元素为基础衍生的非金属掺杂材料的全解水性能,进一步探讨了非金属掺杂材料在电解水领域的应用前景和研究方法,对未来清洁能源的大规模使用和环境的保护具有重要的研究意义和应用价值。
With the increasingly serious oil crisis and growing concerns about carbon emissions, hydrogen energy has emerged as a green, efficient and clean alternative to traditional fossil fuels. Among the various scientific methods for producing hydrogen energy, water electrolysis stands out due to its environmental friendliness, high energy efficiency, strong adaptability and sustainability, playing a positive role in promoting energy structure transformation and achieving carbon neutrality goals. Therefore, it is imperative to develop efficient and low-cost catalysts for electrolytic water production. This article investigates the overall water splitting performance of non-metallic doped materials derived from nickel element, further exploring the application prospects and research methods of non-metallic doped materials in the field of water electrolysis, which is of great research significance and application value for the large-scale use of clean energy and protection of the environment in the future.

References

[1]  Van Bavel, J. (2013) The World Population Explosion: Causes, Backgrounds and Projections for the Future. Facts, Views & Vision in ObGyn, 5, 281-289.
[2]  Mont, O. and Power, K. (2010) The Role of Formal and Informal Forces in Shaping Consumption and Implications for a Sustainable Society. Part I. Sustainability, 2, 2232-2252.
https://doi.org/10.3390/su2072232
[3]  Holechek, J.L., Geli, H.M.E., Sawalhah, M.N., et al. (2022) A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 14, 4792.
https://doi.org/10.3390/su14084792
[4]  Zeng, J., Xu, L., Luo, X., et al. (2022) Z-Scheme Systems of ASi2N4 (A = Mo or W) for Photocatalytic Water Splitting and Nanogenerators. Tungsten, 4, 52-59.
https://doi.org/10.1007/s42864-021-00116-3
[5]  Zhao, M.J., He, Q., Xiang, T., et al. (2023) Automatic Operation of Decoupled Water Electrolysis Based on Bipolar Electrode. Renewable Energy, 203, 583-591.
https://doi.org/10.1016/j.renene.2022.12.083
[6]  Wu, D. and Zhang, Z. (2018) Simultaneous Non-Metal Doping and Cocatalyst Decoration for Efficient Photoelectrochemical Water Splitting on Hematite Photoanodes. Electrochimica Acta, 282, 48-55.
https://doi.org/10.1016/j.electacta.2018.06.045
[7]  Liu, W.X., Wang, C.L., Lei, J.M., et al. (2022) A Nickel Complex of 2,2-Dicyanoethylene-1,1-Dithiolate, a Catalyst for Electrochemical and Photochemical Driven Hydrogen Evolution. Inorganic and Nano-Metal Chemistry, 52, 533-541.
https://doi.org/10.1080/24701556.2021.1897615
[8]  Zhang, Y., Yun, S., Dang, J., et al. (2022) Defect Engineering via Ternary Nonmetal Doping Boosts the Catalytic Activity of ZIF-Derived Carbon-Based Metal-Free Catalysts for Photovoltaics and Water Splitting. Materials Today Physics, 27, Article ID: 100785.
https://doi.org/10.1016/j.mtphys.2022.100785
[9]  Al-Naggar, A.H., Shinde, N.M., Kim, J.S., et al. (2023) Water Splitting Performance of Metal and Non-Metal-Doped Transition Metal Oxide Electrocatalysts. Coordination Chemistry Reviews, 474, Article ID: 214864.
https://doi.org/10.1016/j.ccr.2022.214864
[10]  Mou, W.Y., Li, T., Xie, B., et al. (2020) Neutral Heteroleptic Nickel Complexes Incorporating Maleonitriledithiolate and Bis (Diphenylphosphanyl) Amine as Robust Molecular Electrocatalysts for Hydrogen Evolution. Inorganica Chimica Acta, 507, Article ID: 119587.
https://doi.org/10.1016/j.ica.2020.119587
[11]  Lee, Y., Min, K., Kim, M., et al. (2023) Core@ Shell Structured NiCo@ NiCoP Nanorods Vertically Aligned on Ni Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Electrolysis. Journal of Alloys and Compounds, 938, Article ID: 168683.
https://doi.org/10.1016/j.jallcom.2022.168683
[12]  Flis-Kabulska, I. and Flis, J. (2020) Electrodeposits of Nickel with Reduced Graphene Oxide (Ni/rGO) and Their Enhanced Electroactivity towards Hydrogen Evolution in Water Electrolysis. Materials Chemistry and Physics, 241, Article ID: 122316.
https://doi.org/10.1016/j.matchemphys.2019.122316
[13]  Rajakumar, M., Manickam, M., Gandhi, N.N., et al. (2020) Nickel Centered Metal-Organic Complex as an Electro-Catalyst for Hydrogen Evolution Reaction at Neutral and Acidic Conditions. International Journal of Hydrogen Energy, 45, 3905-3915.
https://doi.org/10.1016/j.ijhydene.2019.12.031
[14]  Zagidullin, A.A., Sakhapov, I.F., Miluykov, V.A., et al. (2021) Nickel Complexes in C?P Bond Formation. Molecules, 26, 5283.
https://doi.org/10.3390/molecules26175283
[15]  Wilson, J.R., Zeller, M. and Szymczak, N.K. (2021) Hydrogen-Bonded Nickel (I) Complexes. Chemical Communications, 57, 753-756.
https://doi.org/10.1039/D0CC07216H
[16]  Cho, H., Lee, N. and Kim, B.H. (2022) Synthesis of Highly Monodisperse Nickel and Nickel Phosphide Nanoparticles. Nanomaterials, 12, 3198.
https://doi.org/10.3390/nano12183198
[17]  Nai, J., Xu, X., Xie, Q., et al. (2022) Construction of Ni (CN)2/NiSe2 Heterostructures by Stepwise Topochemical Pathways for Efficient Electrocatalytic Oxygen Evolution. Advanced Materials, 34, Article ID: 2104405.
https://doi.org/10.1002/adma.202104405
[18]  Cai, R., Jin, H., Yang, D., et al. (2020) Generalized Preparation of Au NP@ Ni(OH)2 Yolk-Shell NPs and Their Enhanced Catalytic Activity. Nano Energy, 71, Article ID: 104542.
https://doi.org/10.1016/j.nanoen.2020.104542

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133