全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含集中质量不同流向多通道旋转输流管动力学特性分析
Dynamic Characteristics Analysis of Multi-Channel Rotary Flow Tube with Concentrated Mass and Different Flow Directions

DOI: 10.12677/ijm.2024.132003, PP. 17-26

Keywords: 多通道输流管,Lagrange方程,临界失稳流速,稳定性,振动模态
Multi-Channel Flow Pipe
, Lagrange Equation, Critical Velocity of Instability, Stability, Mode of Vibration

Full-Text   Cite this paper   Add to My Lib

Abstract:

涡轮叶片工作环境极度严苛,需要在内部设置多条冷却通道使其冷却降温。叶片在自身旋转和内部流体的共同作用下,会引发系统共振,因此需要对叶片的动力学行为进行研究。本文主要研究旋转叶片在内部流体作用下产生的动力学行为,将含有叶冠和蛇形冷却通道的叶片结构简化为含端部集中质量不同流向多通道旋转输流管,通过计算位移分量在轴向拉伸和弯曲变形的作用下产生的动能、势能以及开放系统下流体作用对系统产生的功,代入Lagrange方程得到系统的动力学方程,将方程无量纲化,使其具有一般性规律。通过求解动力学方程的特征值,计算得到系统的特征频率和阻尼频率。研究结果表明:旋转输流管中流体流速方向会显著影响系统的特征轨迹和振动模态,转速和端部集中质量会显著提高输流管的稳定性。
The working environment of turbine blades is extremely harsh, and multiple cooling channels need to be set up inside to cool them. Under the joint action of blade rotation and internal fluid, the system resonance will be triggered, so it is necessary to study the dynamic behavior of blade. This paper mainly studies the dynamic behavior of rotating blades under the action of internal fluids. The blade structure containing blade crown and serpentine cooling channels is simplified into a multi-channel rotating flow tube with concentrated mass at the end in different directions. Kinetic energy and potential energy generated by the displacement component under the action of axial stretching and bending deformation and the work generated by fluid action on the system under an open system are calculated. The Lagrange equation is substituted to obtain the kinetic equation of the system, and the equations are dimensionless, so that they have general laws. By solving the eigenvalues of the dynamic equations, the eigenfrequencies and damping frequencies of the system are calculated. The results show that the characteristic trajectory and vibration mode of the system are significantly affected by the flow velocity direction in the rotating flow tube, and the stability of the flow tube is significantly improved by the rotational speed and end mass.

References

[1]  蒋洪德, 任静, 李雪英, 等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34(29): 5096-5102.
[2]  张效伟, 朱惠人. 大型燃气涡轮叶片冷却技术[J]. 热能动力工程, 2008(1): 1-6 103.
[3]  Sutherland, R. (1950) Bending Vibration of a Rotating Blade Vibrating in the Plane of Rotation. Journal of Applied Mechanics, 16, 389-394.
https://doi.org/10.1115/1.4010015
[4]  Liner, H.S. (1954) The Natural Frequencies and Modes of Vibration of a Rotating Beam. Journal of the Royal Aeronautical Society, 58, 652-654.
https://doi.org/10.1017/S036839310009965X
[5]  Carnegie, W. (1959) Vibrations of Rotating Cantilever Blading: Theoretical Approaches to the Frequency Problem Based on Energy Methods. Journal of Mechanical Engineering Sciences, 1, 235-240.
https://doi.org/10.1243/JMES_JOUR_1959_001_028_02
[6]  Porat, I. and Niv, M. (1971) Vibration of a Rotating Shaft by the “Timoshenko Beam” Theory. Israel Journal of Technology, 9, 535-546.
[7]  冯振宇, 王忠民, 赵凤群. 考虑转动惯量时输流管道动力特性分析的有限差分法[J]. 西安公路交通大学学报, 1998(2): 41-45.
[8]  Mciver, D.B. (1973) Hamilton’s Principle for Systems of Changing Mass. Journal of Engineering Mathematics, 7, 249-261.
https://doi.org/10.1007/BF01535286
[9]  Guran, A. and Plaut, R.H. (1993) An Adjoint Variational Principle for Fluid Conveying Pipes. Zeitschrift fur Angewandte Mathematik und Mechanik, 73, T496-T497.
[10]  Dimarogonas, D.D. (2000) Linear In-Plane and Out-of-Plane Lateral Vibrations of a Horizontally Rotating Fluid-Tube Cantilever. Journal of Fluids and Structures, 14, 1-24.
[11]  倪樵, 黄玉盈, 陈贻平. 微分求积法分析具有弹性支承输液管的临界流速[J]. 计算力学学报, 2001, 18(2): 146-149.
[12]  Bourriéres, F.J. (1939) Sur un phénoméne d’oscillation autoentretennue en mécaniques des fluids reels. Publications Scientifiques et Techniques du Ministére de lAir, 147, 57-65.
[13]  Pa?doussis, M.P. and Issid, N.T. (1974) Dynamic Stability of Pipes Conveying Fluid. Journal of Sound and Vibration, 33, 267-294.
https://doi.org/10.1016/S0022-460X(74)80002-7
[14]  赵桂欣, 孟帅, 车驰东, 等. 解释自由端含集中质量悬臂输流管固有频率计算悖论[J]. 振动与冲击, 2023, 42(7): 18-24.
[15]  易浩然, 周坤, 代胡亮, 等. 含集中质量悬臂输流管的稳定性与模态演化特性研究[J]. 力学学报, 2020(6): 52.
[16]  El Najjar, J. and Daneshmand, F. (2020) Stability of Horizontal and Vertical Pipes Conveying Fluid under the Effects of Additional Point Masses and Springs. Ocean Engineering, 206, Article ID: 106943.
https://doi.org/10.1016/j.oceaneng.2020.106943
[17]  龙伦, 袁巍, 成晓鸣, 等. 航空发动机带冠涡轮叶片振动特性分析及验证[J]. 机械强度, 2021, 43(4): 960-965.
[18]  杨佳丽, 杨虹, 李伟. 旋转Timoshenko输流管道的固有频率和稳定性分析[J]. 动力学与控制学报, 2023, 21(2): 58-65.
[19]  Yoon, H.I. and Son, I.S. (2007) Dynamic Response of Rotating Flexible Cantilever Pipe Conveying Fluid with Tip Mass. International Journal of Mechanical Sciences, 49, 878-887.
https://doi.org/10.1016/j.ijmecsci.2006.11.006
[20]  张博, 郑昊楷, 孙东生, 等. 双通道旋转输流管临界流速和振动模态分析[J]. 力学学报, 2023, 55(1): 182-191.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133