全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冻土–复合土工布界面复合幂–指数本构模型研究
Composite Power-Exponential Constitutive Modelling on Frozen Soil-Composite Geotextile Interface

DOI: 10.12677/ijm.2024.132006, PP. 52-62

Keywords: 本构模型,界面,水热循环,冻土
Constitutive Modelling
, Interface, Hydrothermal Cycle, Frozen Soil

Full-Text   Cite this paper   Add to My Lib

Abstract:

土工合成材料广泛应用于各种工程中,由于土体与土工合成材料的物理力学特性差异明显,且土体易受水热条件影响,不同条件下界面的剪切力学特性存在明显的差异,界面的应力应变曲线也存在较大的形态差异。为准确描述冻土–复合土工布界面剪切特性,基于在不同水热循环工况下进行直剪试验得到的试验数据,提出了一种改进的复合幂–指数界面本构模型,并对得到的模型参数进行了分析和讨论。结果表明该模型能准确地反映不同类型的软化型和硬化型曲线,模型中不同参数有其对应的明确物理意义。针对不同复杂工况条件下的应力应变关系进行有效的拟合,并结合具体试验工况给出典型的有代表性的拟合函数关系式,对冻土区基础工程建设具有指导和参考意义。
Geosynthetics are widely used in a variety of projects, due to the obvious differences in the physical and mechanical properties of the soil and geosynthetics, and the soil is susceptible to hydrothermal conditions, there are obvious differences in the shear mechanical properties of the interface under different conditions, and there are also large differences in the shape of the stress-strain curve at the interface. To accurately describe the shear characteristics of the frozen soil-composite geotextile interface, an improved composite power-exponential interfacial constitutive model is proposed based on the test data obtained from direct shear tests carried out under different hydrothermal cycling conditions, and the obtained model parameters are analyzed and discussed. The results show that the model can accurately reflect different types of softening and hardening curves, and the different parameters in the model have their corresponding clear physical meanings. The stress-strain relationship under different complex working conditions is fitted effectively, and a typical and representative fitted functional relationship is given in combination with specific test conditions, which is of guiding and reference significance for the construction of infrastructure projects in frozen soil areas.

References

[1]  Yuan, W., Cheng, Y., Min, M. and Wang, X. (2023) Study on Acoustic Emission Characteristics during Shear Deformation of Rock Structural Planes Based on Particle Flow Code. Computational Particle Mechanics, 11, 105-118.
https://doi.org/10.1007/s40571-023-00611-z
[2]  李丽, 张坤, 张青龙, 等. 干湿和冻融循环作用下黄土强度劣化特性试验研究[J]. 冰川冻土, 2016, 38(4): 1142-1149.
[3]  Liu, J., Chang, D. and Yu, Q. (2016) Influence of Freeze-Thaw Cycles on Mechanical Properties of a Silty Sand. Engineering Geology, 210, 23-32.
https://doi.org/10.1016/j.enggeo.2016.05.019
[4]  He, P., Cao, H., Dong, J., Hou, G., Mu, Y. and Zhang, J. (2024) Experimental Study on the Effect of Freeze-Thaw Cycles on the Shear Characteristics of Frozen Soil-Composite Geotextile Interface. Case Studies in Thermal Engineering, 54, Article ID: 104011.
https://doi.org/10.1016/j.csite.2024.104011
[5]  Zhao, Y., Shen, M., Bi, J., Wang, C., Yang, Y., Du, B. and Ning, L. (2022) Experimental Study on Physical and Mechanical Characteristics of Rock-Concrete Combined Body under Complex Stress Conditions. Construction and Building Materials, 324, Article ID: 126647.
https://doi.org/10.1016/j.conbuildmat.2022.126647
[6]  Seidel, J. and Haberfield, C. (2002) Laboratory Testing of Concrete-Rock Joints in Constant Normal Stiffness Direct Shear. Geotechnical Testing Journal, 25, 391-404.
https://doi.org/10.1520/gtj11292j
[7]  Zhang, H., Su, Y., Li, A. and Guo, P. (2023) Experimental Investigation of Novel Pre-Compressed Viscoelastic Dampers with Different Matrix Materials. Structures, 53, 625-641.
https://doi.org/10.1016/j.istruc.2023.04.056
[8]  Xie, S., Lin, H., Duan, H. and Chen, Y. (2023) Modeling Description of Interface Shear Deformation: A Theoretical Study on Damage Statistical Distributions. Construction and Building Materials, 394, Article ID: 132052.
https://doi.org/10.1016/j.conbuildmat.2023.132052
[9]  Aubry, D., Modaressi, A. and Modaressi, H. (1990) A Constitutive Model for Cyclic Behaviour of Interfaces with Variable Dilatancy. Computers and Geotechnics, 9, 47-58.
https://doi.org/10.1016/0266-352x(90)90028-t
[10]  Long, Y., Chen, J. and Zhang, J. (2017) Introduction and Analysis of a Strain-Softening Damage Model for Soil-Structure Interfaces Considering Shear Thickness. KSCE Journal of Civil Engineering, 21, 2634-2640.
https://doi.org/10.1007/s12205-017-0476-2
[11]  季明, 孙中光, 刘文朋, 等. 基于幂函数分布的砂岩损伤本构模型研究[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(3): 324-331.
[12]  张冬霁, 卢廷浩. 一种土与结构接触面模型的建立及其应用[J]. 岩土工程学报, 1998(6): 65-69.
[13]  周爱兆, 卢廷浩. 基于广义位势理论的接触面弹塑性本构模型[J]. 岩土工程学报, 2008, 30(10): 1532-1536.
[14]  董龙龙, 吴文兵, 梁荣柱, 等. 基于指数模型的能源桩长期响应研究[J]. 岩石力学与工程学报, 2021, 40(3): 629-639.
[15]  Gitau, A.N., Gumbe, L.O. and Biamah, E.K. (2006) Influence of Soil Water on Stress-Strain Behaviour of a Compacting Soil in Semi-Arid Kenya. Soil and Tillage Research, 89, 144-154.
https://doi.org/10.1016/j.still.2005.07.008
[16]  Duncan, J.M. and Chang, C. (1970) Nonlinear Analysis of Stress and Strain in Soils. Journal of the Soil Mechanics and Foundations Division, 96, 1629-1653.
https://doi.org/10.1061/jsfeaq.0001458
[17]  黄文熙. 土的弹塑性应力-应变模型理论[J]. 岩土力学, 1979(1): 1-20.
[18]  殷德顺, 任俊娟, 和成亮, 等. 基于分数阶微积分理论的软土应力-应变关系[J]. 岩石力学与工程学报, 2009, 28(z1): 2973-2979.
[19]  刘祖典, 李靖, 郭增玉, 等. 陕西关中黄土变形特性和变形参数的探讨[J]. 岩土工程学报, 1984(3): 24-34.
[20]  王丽琴, 鹿忠刚, 邵生俊. 岩土体复合幂-指数非线性模型[J]. 岩石力学与工程学报, 2017, 36(5): 1269-1278.
[21]  陈晓, 何鹏飞, 董建华, 等. 冻土-构筑物界面粘聚-损伤-摩擦本构模型[J]. 兰州理工大学学报, 2021, 47(5): 115-121.
[22]  陈良致, 温智, 董盛时, 等. 青藏冻结粉土与玻璃钢接触面本构模型研究[J]. 冰川冻土, 2016, 38(2): 402-408.
[23]  He, P., Mu, Y., Ma, W., Huang, Y. and Dong, J. (2021) Testing and Modeling of Frozen Clay-Concrete Interface Behavior Based on Large-Scale Shear Tests. Advances in Climate Change Research, 12, 83-94.
https://doi.org/10.1016/j.accre.2020.09.010
[24]  Zhang, Q., Zhang, J., Wang, H. and Zhang, T. (2021) Mechanical Behavior and Constitutive Relation of the Interface Between Warm Frozen Silt and Cemented Soil. Transportation Geotechnics, 30, Article ID: 100624.
https://doi.org/10.1016/j.trgeo.2021.100624
[25]  Shi, S., Zhang, F., Feng, D. and Zhu, J. (2023) Shear Behavior of Ice-Frozen Soil Interface: Experiments and Elastoplastic Modeling. Geomechanics for Energy and the Environment, 34, Article ID: 100447.
https://doi.org/10.1016/j.gete.2023.100447
[26]  蒋敏敏, 陈桂香. 基于应力路径试验的小麦粮堆力学特性和应力应变关系模型[J]. 农业工程学报, 2018, 34(7): 280-287.
[27]  张良以, 陈铁林, 张顶立, 等. 岩土材料非线性本构模型的开发与验证[J]. 北京交通大学学报, 2018, 42(6): 9-14, 40.
[28]  干飞, 叶晓明, 郑刚, 等. 一种新型剪应力模型——双曲力学模型[J]. 岩石力学与工程学报, 2021, 40(S2): 3253-3260.
[29]  万征, 曹伟, 易海洋. 复杂加载下K0超固结黏土的本构模型[J]. 岩石力学与工程学报, 2022, 41(4): 849-864.
[30]  宋梓豪, 姚兆明. 人工冻土复合幂-指数非线性强度模型[J]. 河南城建学院学报, 2023, 32(5): 37-42.
[31]  张航, 曹海涛, 何鹏飞, 等. 湿干循环作用对冻土-复合土工布界面常法向应力剪切特性的影响试验研究[J]. 冰川冻土, 2024, 46(1): 185-198.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133