全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Generalized Height-Diameter Models for Pinus montezumae Lamb. and Pinus pseudostrobus Lindl. Plantations in Michoacan, Mexico

DOI: 10.4236/ojf.2024.143014, PP. 214-232

Keywords: Random Covariate, Random Effects, Variance Structure, Forest Inventories, Forest Management, Mixed Models

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at the stand level is a valuable support tool in forest inventories. The objective was to fit and propose a generalized H-d model for Pinus montezumae and Pinus pseudostrobus established in forest plantations of Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae and Pinus pseudostrobus, respectively. The best model was refitted with the maximum likelihood mixed effects model (MEM) approach by including the site as a classification variable and a known variance structure. The Wang and Tang equation was selected as the best model with NLS; the MEM with an additive effect on two of its parameters and an exponential variance function improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, respectively. The model validation showed equality of means among the estimates for both species and an independent subsample. The calibration of the MEM at the plot level was efficient and might increase the applicability of these results. The inclusion of dominant height in the MEM approach helped to reduce bias in the estimates and also to better explain the variability among plots.

References

[1]  Alder, D. (1980). Estimación del Volumen Forestal y Predicción del Rendimiento con Referencia Especial a los Trópicos (Vol. 2, 118 p.). Organización de las Naciones Unidas para la Agricultura y la Alimentación.
[2]  Álvarez-González, J. G., Rodríguez-Soalleiro, R., & Rojo-Alboreca, A. (2007). Resolución de problemas del ajuste simultaneo de sistemas de ecuaciones: Heterocedasticidad y variables dependientes con distinto número de observaciones. Cuadernos de la Sociedad Española de Ciencias Forestales, 23, 35-42.
[3]  Barrio, A. M., Álvarez, J. G., & Díaz-Maroto, H. (2004). Elaboración de una tarifa con clasificación de productos para Quercus robur L. en Galicia, basada en un modelo de volumen porcentual. Investigación agraria. Sistemas y Recursos Forestales, 13, 506-517.
https://doi.org/10.5424/srf/2004133-00849
[4]  Baty F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J. P., & Delignette-Muller, M. L. (2015). A Toolbox for Nonlinear Regression in R: The Package Nlstools. Journal of Statistical Software, 66, 1-21.
https://doi.org/10.18637/jss.v066.i05
[5]  Bronisz, K., & Mehtätalo, L. (2020). Mixed-Effects Generalized Height-Diameter Model for Young Silver Birch Stands on Post-Agricultural Lands. Forest Ecology and Management, 460, Article ID: 117901.
https://doi.org/10.1016/j.foreco.2020.117901
[6]  Calama, R., & Montero, G. (2004). Interregional Nonlinear Height-Diameter Model with Random Coefficients for Stone Pine in Spain. Canadian Journal of Forest Research, 34, 150-163.
https://doi.org/10.1139/x03-199
[7]  CONAFOR (2018). Programas específicos de intervención institucional: Programa de plantaciones forestales comerciales 2014-2018.
https://www.gob.mx/conafor/documentos/plantaciones-forestales-comerciales-27940
[8]  Corral, R. S., Silva, A. M., & Quiñonez, G. B. (2019). Modelo generalizado no-lineal altura-diámetro con efectos mixtos para siete especies de Pinus en Durango, México. Revista Mexicana de Ciencias Forestales, 10, 86-117.
https://doi.org/10.29298/rmcf.v10i53.500
[9]  Corral-Rivas, S., Álvarez-González, J. G., Crecente-Campo, F., & Corral-Rivas, J. J. (2014). Local and Generalized Height-Diameter Models with Random Parameters for Mixed, Uneven-Aged Forests in Northwestern Durango, Mexico. Forest Ecosystems, 1, 1-9.
https://doi.org/10.1186/2197-5620-1-6
[10]  Correia, V. G., Ribeiro, A. M., Fernandes, G. S., Zanetti, S. S., Marques, M. S., & Rosa, A. S. (2018). Prognoses of Diameter and Height of Trees of Eucalyptus Using Artificial Intelligence. Science of the Total Environment, 619-620, 1473-1481.
https://doi.org/10.1016/j.scitotenv.2017.11.138
[11]  Crecente-Campo, C. F., Tomé, M., Soares, P., & Diéguez-Aranda, U. (2010). A Generalized Nonlinear Mixed-Effects Height-Diameter Model for Eucalyptus globulus L. in Northwestern Spain. Forest Ecology and Management, 259, 943-952.
https://doi.org/10.1016/j.foreco.2009.11.036
[12]  Diéguez-Aranda, U., Barrio, A. M., Castedo-Dorado, F., & Álvarez, G. (2005). Relación altura-diámetro generalizada para masas de Pinus sylvestris L. procedentes de repoblación en el noroeste de España. Investigación agraria. Sistemas y recursos forestales, 14, 229-241.
https://doi.org/10.5424/srf/2005142-00886
[13]  Ercanli, Í. (2015). Nonlinear Mixed Effect Models for Predicting Relationships between Total Height and Diameter of Oriental Beech Trees in Kestel, Turkey. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 21, 185-202.
https://doi.org/10.5154/r.rchscfa.2015.02.006
[14]  Ferraz, F. A. C., Mola-Yudego, B., Ribeiro, A., Scolforo, R. S. J., Loos, R. A., & Scolforo, H. F. (2018). Height-Diameter Models for Eucalyptus sp. Plantations in Brazil. CERNE, 24, 9-17.
https://doi.org/10.1590/01047760201824012466
[15]  Flores-Ayala, E., Pineda-Ojeda, T., Hernández-Ramos, J., Buendía-Rodríguez, E., Flores, A., & Guerra-de la Cruz, V. (2023). Models for Determining Allometric Relationships in Juniperus deppeana Steud. in the State of Tlaxcala. Revista Mexicana de Ciencias Forestales, 14, 30-53.
https://doi.org/10.29298/rmcf.v14i80.1363
[16]  Gałecki, A., & Burzykowski, T. (2013). Linear Mixed-Effects Models Using R (574 p.). Springer Science-Business Media.
https://doi.org/10.1007/978-1-4614-3900-4
[17]  García-Cuevas, X., Hernández-Ramos, J., García-Magaña, J. J., Aguilar-Toral, C., & Hernández-Ramos, A. (2013). Ecuaciones generalizadas de altura-diámetro para rodales de Pinus montezumae en Nuevo San Juan Parangaricutiro, Michoacán, México. In M. P. Barrón-González, & S. Moreno-Limón (Eds.), Aporte científico ante el cambio climático y el desarrollo sostenible: Sociedad de cambio climático y desarrollo sostenible (pp. 9-24). Editorial Académica Española.
[18]  Gómez-García, E., Fonseca, T. F., Crecente-Campo, F., Almeida, L. R., Diéguez-Aranda, U., Huang, S., & Marques, C. P. (2015). Height-Diameter Models for Maritime Pine in Portugal: A Comparison of Basic, Generalized and Mixed-Effects Models. iForest, 9, 72-78.
https://doi.org/10.3832/ifor1520-008
[19]  González, C. E., Gasca, E. M., & Heredia, P. D. (2014). Cultura organizacional del sistema empresarial de la Comunidad Indígena de Nuevo San Juan Parangaricutiro: Un manejo sustentable forestal. Revista Mexicana de Agronegocios, 35, 1023-1034.
[20]  Hernández, R. J., Avilés, A. C., García, J. J. M., Hernández, A. R., García, X. C., & Flores, C. L. (2020). Ecuaciones locales y generalizadas de altura-diámetro para Pinus patula Schl. et Cham. en Veracruz, México. Ecosistemas y Recursos Agropecuarios, 7, e2457.
[21]  Hernández, R. J., García, J. J. M., García, X. C., García, G. G. E., Hernández, A. R., Muñoz, H. J. F., & Martínez, M. S. (2018). Ecuaciones generalizadas altura-diámetro para bosques de Pinus pseudostrobus Lindl. en Michoacán, México. Madera y Bosques, 24, e242494.
https://doi.org/10.21829/myb.2018.242494
[22]  Hernández, R. J., García, X. C., Hernández, A. R., García, J. J. M., Muñoz, H. J. F., Flores, C. L. G. G., & García, E. (2015). Ecuaciones altura-diámetro generalizadas para Pinus teocote Schlecht. & Cham. en el estado de Hidalgo. Revista Mexicana de Ciencias Forestales, 6, 8-21.
https://doi.org/10.29298/rmcf.v6i31.192
[23]  INEGI (2017). Anuario estadístico y geográfico de Michoacán de Ocampo 2017 (723 p.). INEGI. Aguascalientes, México.
[24]  Infante, G. S., & Zárate, G. P. L. (2012). Métodos estadísticos: Un enfoque interdisciplinario (3ª ed., 624 p.). Colegio de Postgraduados. Montecillo, Edo. de Méx., México.
[25]  Liu, M., Feng, Z., Zhang, Z., Ma, C., Wang, M., Lian, B., Sun, R., & Zhang, L. (2017). Development and Evaluation of Height Diameter at Breast Models for Native Chinese Metasequoia. PLOS ONE, 12, e0182170.
https://doi.org/10.1371/journal.pone.0182170
[26]  Mayer, D. G., & Butler, D. G. (1993). Statistical Validation. Ecological Modelling, 68, 21-32.
https://doi.org/10.1016/0304-3800(93)90105-2
[27]  Mehtätalo, L. (2005). Height-Diameter Models for Scots Pine and Birch in Finland. Silva Fennica, 39, 55-66.
https://doi.org/10.14214/sf.395
[28]  Mehtätalo, L., & Lappi, J. (2020). Biometry for Forestry and Environmental Data with Examples in R (411 p.). Taylor & Francis Group, LLC.
https://doi.org/10.1201/9780429173462
[29]  Mehtätalo, L., de-Miguel, S., & Gregoire, T. G. (2015). Modeling Height-Diameter Curves for Prediction. Canadian Journal of Forest Research, 45, 826-837.
https://doi.org/10.1139/cjfr-2015-0054
[30]  Mısır, N. (2010). Generalized Height-Diameter Models for Populus tremula L. Stands. African Journal of Biotechnology, 9, 4348-4355.
[31]  Muñoz, F. H. J., Sáenz, J. T. R., García, J. J. M., Coria, V. M. Á., & Muñoz, Y. V. (2015). Áreas potenciales para establecer plantaciones comerciales de pino en la sierra Purhépecha, Michoacán. Foresta Veracruzana, 17, 35-42.
[32]  Muñoz, F., Sáenz, J. T. R., García, J. J. S., Hernández, E. M., & Anguiano, J. C. (2011). Áreas potenciales para establecer plantaciones forestales comerciales de Pinus pseudostrobus Lindl. y Pinus greggii Engelm. en Michoacán. Revista Mexicana de Ciencias Forestales, 2, 19-44.
[33]  Pinheiro, J., & Bates, D. (2000). Mixed-Effects Models in S and S-PLUS. Statistics and Computing (528 p.). Springer-Verlag.
[34]  Prodan, M., Peters, R., Cox, F., & Real, P. (1997). Mensura Forestal. Serie Investigación y Educación de Desarrollo Sostenible (586 p.). Instituto Interamericano de Cooperación para la Agricultura (IICA)/BMZ/GTZ sobre agricultura, recursos naturales y desarrollo sostenible, San José.
[35]  R Core Team (2021). R: A Language and Environmental for Statistical Computing. R Foundation for Statistical Computing.
http://www.R-project.org/
[36]  Sakici, O. E., Misir, N., Yavuz, H., & Misir, M. (2008). Stem Taper Functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scandinavian Journal of Forest Research, 23, 522-533.
https://doi.org/10.1080/02827580802552453
[37]  Sánchez-González, M., Cañellas, I., & Montero, G. (2007). Generalized Height-Diameter and Crown Diameter Prediction Models for Cork Oak Forests in Spain. Investigación Agraria: Sistemas y Recursos Forestales, 16, 76-88.
https://doi.org/10.5424/srf/2007161-00999
[38]  Santiago-García, W., Jacinto-Salinas, A. H., Rodríguez-Ortiz, G., Nava-Nava, A., Santiago-García, E.,Ángeles-Pérez, G., & Enríquez-del Valle, J. R. (2020). Generalized Height-Diameter Models for Five Pine Species at Southern Mexico. Forest Science and Technology, 16, 49-55.
https://doi.org/10.1080/21580103.2020.1746696
[39]  Santiago-García, W., Pérez-López, E., Quiñonez-Barraza, G., Rodríguez-Ortiz, G., Santiago-García, E., Ruiz-Aquino, F., & Tamarit-Urias, J. C. (2017). A Dynamic System of Growth and Yield Equations for Pinus patula. Forests, 8, Article No. 465.
https://doi.org/10.3390/f8120465
[40]  Sharma, M., & Parton, J. (2007). Height-Diameter Equations for Boreal Tree Species in Ontario Using Mixed-Effects Modeling Approach. Forest Ecology and Management, 249, 187-198.
https://doi.org/10.1016/j.foreco.2007.05.006
[41]  Sharma, R. P., Vacek, Z., & Vacek, S. (2016). Nonlinear Mixed Effect Height-Diameter Model for Mixed Species Forests in the Central Part of the Czech Republic. Journal of Forest Science, 62, 470-484.
https://doi.org/10.17221/41/2016-JFS
[42]  Spurr, S. H., & Barnes, B. V. (1982). Ecología Forestal (Trad. C. L. Raigorodsky Z., 690 p.). A. G. T. Editor, México, D. F.
[43]  Temesgen, H., Monleon, V. J., & Hann, D. W. (2008). Analysis and Comparison of Nonlinear Tree Height Prediction Strategies for Douglas-Fir Forests. Canadian Journal of Forest Research, 38, 553-565.
https://doi.org/10.1139/X07-104
[44]  Torres, R. J. M., & Magaña, S. O. (2001). Evaluación de Plantaciones Forestales (472 p.). Limusa Noriega Editores, México, D. F.
[45]  Vargas-Larreta, B., Castedo-Dorado, F., Álvarez-González, J. G., Barrio-Anta, M., & Cruz-Cobos, F. (2009). A Generalized Height-Diameter Model with Random Coefficients for Uneven-Aged Stands in El Salto. Durango (Mexico). Forestry: An International Journal of Forest Research, 82, 445-462.
https://doi.org/10.1093/forestry/cpp016
[46]  Vonesh, E. F., & Chinchilli, V. M. (1997). Linear and Nonlinear Models for the Analysis of Repeated Measurements (560 p.). Marcel Dekker Inc.
https://doi.org/10.1201/9781482293272
[47]  Wang, M., & Tang, S. (1997). Research on Universal Height Diameter Curves. Forest Research, 10, 259-264.
[48]  Zambrano, T., Suarez, M., & Jerez, M. (2001). Evaluación de la efectividad del ajuste de algunos modelos de regresión utilizados para estimar la relación altura-diámetro en parcelas permanentes de rendimiento y aclareo en teca (Tectona grandis L. F.). Revista Forestal Venezolana, 45, 163-173.
[49]  Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R (574 p.). Springer Science Business Media.
https://doi.org/10.1007/978-0-387-87458-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413