全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

One-Pot Green Synthesis of 1, 4-Dihydropyridine Derivatives Using Polyindole TiO2 Nanocatalyst by Solvent Free Method

DOI: 10.4236/ojcm.2024.143008, PP. 109-123

Keywords: TiO2, Nanocatalyst, Green Synthesis, Surface Morphology

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.

References

[1]  Stout, D.M. and Meyers, A.I. (1982) Recent Advances in the Chemistry of Dihydropyridines. Chemical Reviews, 82, 223-243.
https://doi.org/10.1021/cr00048a004
[2]  Eisner, U. and Kuthan, J. (1972) Chemistry of Dihydropyridines. Chemical Reviews, 72, 1-42.
https://doi.org/10.1021/cr60275a001
[3]  Mannhold, R., Jablonka, B., Voigt, W., Schönafinger, K. and Schraven, E. (1992) Calcium-and Calmodulin-Antagonism of Elnadipine Derivatives: Comparative SAR. European Journal of Medicinal Chemistry, 27, 229-235.
https://doi.org/10.1016/0223-5234(92)90006-m
[4]  Boecker, R.H. and Guengerich, F.P. (1986) Oxidation of 4-Aryl-and 4-Alkyl-Substituted 2, 6-Dimethyl-3, 5-Bis(alkoxycarbonyl)-1, 4-Dihydropyridines by Human Liver Microsomes and Immunochemical Evidence for the Involvement of a Form of Cytochrome P-450. Journal of Medicinal Chemistry, 29, 1596-1603.
https://doi.org/10.1021/jm00159a007
[5]  Duburs, G. and Sausins, A. (1988) Synthesis of 1, 4-Dihydropyridines by Cyclocondensation Reactions. Heterocycles, 27, Article 269.
https://doi.org/10.3987/rev-87-370
[6]  Goldmann, S. and Stoltefuss, J. (1991) 1, 4-Dihydropyridines: Effects of Chirality and Conformation on the Calcium Antagonist and Calcium Agonist Activities. Angewandte Chemie International Edition in English, 30, 1559-1578.
https://doi.org/10.1002/anie.199115591
[7]  Bossert, F., Meyer, H. and Wehinger, E. (1981) 4-Aryldihydropyridines, a New Class of Highly Active Calcium Antagonists. Angewandte Chemie International Edition in English, 20, 762-769.
https://doi.org/10.1002/anie.198107621
[8]  Bossert, F. and Vater, W. (1989) 1, 4-Dihydropyridines—A Basis for Developing New Drugs. Medicinal Research Reviews, 9, 291-324.
https://doi.org/10.1002/med.2610090304
[9]  Reid, J.L., Meredith, P.A. and Pasanisi, F. (1985) Clinical Pharmacological Aspects of Calcium Antagonists and Their Therapeutic Role in Hypertension. Journal of Cardiovascular Pharmacology, 7, S18-S20.
https://doi.org/10.1097/00005344-198507004-00004
[10]  Sadeek, S.A., Zordok, W.A., El-Attar, M.S. and Ibrahim, M.S. (2015) Spectroscopic, Structural, Thermal and Antimicrobial Studies of 4, 6-Bis (4-Chlorophenyl)-2-Oxo-1, 2-Dihydropyridine-3-Carbonitrile with Some Transition Metals. Bulletin of the Chemical Society of Ethiopia, 29, 75-94.
https://doi.org/10.4314/bcse.v29i1.7
[11]  Nkosi, S.M., Anand, K., Anandakumar, S., Singh, S., Chuturgoon, A.A. and Gengan, R.M. (2016) Design, Synthesis, Anticancer, Antimicrobial Activities and Molecular Docking Studies of Novel Quinoline Bearing Dihydropyridines. Journal of Photochemistry and Photobiology B: Biology, 165, 266-276.
https://doi.org/10.1016/j.jphotobiol.2016.10.009
[12]  Upadhyay, S.K., Singh, R., Kumar, P., Singh, M., Yadav, M., Kumar, V., Aggarwal, D. and Sehrawat, N. (2019) In Vitro Antitubercular Activity of Dihydropyridine-Dicarboxamide and Pyrazole Derivatives against Mycobacterium Tuberculosis. Bulletin of Pure & Applied Sciences-Zoology, 38, 102-109.
https://doi.org/10.5958/2320-3188.2019.00011.1
[13]  Khadilkar, B.M., Gaikar, V.G. and Chitnavis, A.A. (1995) Aqueous Hydrotrope Solution as a Safer Medium for Microwave Enhanced Hantzsch Dihydropyridine Ester Synthesis. Tetrahedron Letters, 36, 8083-8086.
https://doi.org/10.1016/0040-4039(95)01680-g
[14]  Öhberg, L. and Westman, J. (2001) An Efficient and Fast Procedure for the Hantzsch Dihydropyridine Synthesis Under Microwave Conditions. SYNLETT, No. 8, 1296-1298.
https://doi.org/10.1055/s-2001-16043
[15]  Agarwal, A. and Chauhan, P.M.S. (2005) Solid Supported Synthesis of Structurally Diverse Dihydropyrido [2, 3-d] Pyrimidines Using Microwave Irradiation. Tetrahedron Letters, 46, 1345-1348.
https://doi.org/10.1016/j.tetlet.2004.12.109
[16]  Ji, S., Loh, T., Jiang, Z. and Lu, J. (2004) Facile Ionic Liquids-Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives under Solvent Free Conditions. SYNLETT, No. 5, 831-835.
https://doi.org/10.1055/s-2004-820035
[17]  Phillips, A.P. (1949) Hantzsch’s Pyridine Synthesis. Journal of the American Chemical Society, 71, 4003-4007.
https://doi.org/10.1021/ja01180a037
[18]  Breitenbucher, J.G. and Figliozzi, G. (2000) Solid-Phase Synthesis of 4-Aryl-1, 4-Dihydropyridines via the Hantzsch Three Component Condensation. Tetrahedron Letters, 41, 4311-4315.
https://doi.org/10.1016/s0040-4039(00)00660-2
[19]  Kaur, M., Priya, A., Sharma, A., Singh, A. and Banerjee, B. (2022) Glycine and Its Derivatives Catalyzed One-Pot Multicomponent Synthesis of Bioactive Heterocycles. Synthetic Communications, 52, 1635-1636.
https://doi.org/10.1080/00397911.2022.2090262
[20]  Sabitha, G., Reddy, G.S.K.K., Reddy, C.S. and Yadav, J.S. (2003) A Novel TMSI-Mediated Synthesis of Hantzsch 1, 4-Dihydropyridines at Ambient Temperature. Tetrahedron Letters, 44, 4129-4131.
https://doi.org/10.1016/s0040-4039(03)00813-x
[21]  Ko, S., Sastry, M.N.V., Lin, C. and Yao, C. (2005) Molecular Iodine-Catalyzed One-Pot Synthesis of 4-Substituted-1, 4-Dihydropyridine Derivatives via Hantzsch Reaction. Tetrahedron Letters, 46, 5771-5774.
https://doi.org/10.1016/j.tetlet.2005.05.148
[22]  Wang, L., Sheng, J., Zhang, L., Han, J., Fan, Z., Tian, H. and Qian, C. (2005) Facile Yb(OTf)3 Promoted One-Pot Synthesis of Polyhydroquinoline Derivatives through Hantzsch Reaction. Tetrahedron, 61, 1539-1543.
https://doi.org/10.1016/j.tet.2004.11.079
[23]  Keyhani, A. and Hatamjafari, F. (2013) Synthesis of 1, 4-Dihydropyridine Derivatives Using FeCl3 as Catalyst under Solvent-Free Condition. Oriental Journal of Chemistry, 29, 783-785.
https://doi.org/10.13005/ojc/290260
[24]  Ko, S. and Yao, C. (2006) Ceric Ammonium Nitrate (CAN) Catalyzes the One-Pot Synthesis of Polyhydroquinoline via the Hantzsch Reaction. Tetrahedron, 62, 7293-7299.
https://doi.org/10.1016/j.tet.2006.05.037
[25]  Adharvana Chari, M. and Syamasundar, K. (2005) Silica Gel/NaHSo4 Catalyzed One-Pot Synthesis of Hantzsch 1, 4-Dihydropyridines at Ambient Temperature. Catalysis Communications, 6, 624-626.
https://doi.org/10.1016/j.catcom.2005.03.010
[26]  Donelson, J.L., Gibbs, R.A. and De, S.K. (2006) An Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives through the Hantzsch Four Component Condensation. Journal of Molecular Catalysis A: Chemical, 256, 309-311.
https://doi.org/10.1016/j.molcata.2006.03.079
[27]  Safari, J., Banitaba, S.H. and Dehghan Khalili, S. (2011) Cobalt Nanoparticles Promoted Highly Efficient One Pot Four-Component Synthesis of 1, 4-Dihydropyridines Under Solvent-Free Conditions. Chinese Journal of Catalysis, 32, 1850-1855.
https://doi.org/10.1016/s1872-2067(10)60295-1
[28]  Tajbakhsh, M., Alaee, E., Alinezhad, H., Khanian, M., Jahani, F., Khaksar, S., Rezaee, P. and Tajbakhsh, M. (2012) Titanium Dioxide Nanoparticles Catalyzed Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives. Chinese Journal of Catalysis, 33, 1517-1522.
https://doi.org/10.1016/s1872-2067(11)60435-x
[29]  Yang, S., Zhao, F., Lü, H., Deng, J. and Zhang, Z. (2012) An Eficient One-Pot Synthesis of 1, 4-Dihydropyridines Catalyzed by Magnetic Nanocrystalline Fe3O4. Journal of Heterocyclic Chemistry, 49, 1126-1129.
https://doi.org/10.1002/jhet.953
[30]  Dam, B., Nandi, S. and Pal, A.K. (2014) An Efficient ‘On-Water’ Synthesis of 1, 4-Dihydropyridines Using Fe3O4@SiO2 Nanoparticles as a Reusable Catalyst. Tetrahedron Letters, 55, 5236-5240.
https://doi.org/10.1016/j.tetlet.2014.08.002
[31]  Alinezhad, H. and Mohseni Tavakkoli, S. (2014) Cu-Doped ZnO Nanocrystalline Powder as a Catalyst for Green and Convenient Multi-Component Synthesis of 1, 4-Dihydropyridine. Research on Chemical Intermediates, 41, 5931-5940.
https://doi.org/10.1007/s11164-014-1712-8
[32]  Bajaj, S.D., Tekade, P.V., Lakhotiya, G.V. and Borkar, P.G. (2017) Microwave Assisted Fast Synthesis of CuO Nanoflakes: Catalytic Application in the Synthesis of 1, 4-Dihydropyridine. Acta Physica Polonica A, 132, 1294-1300.
https://doi.org/10.12693/aphyspola.132.1294
[33]  Dehghanizadeh, Z. and Bauzar, F. (2018) Catalytic Effect of Green Zinc Oxide Nanoparticles on Multicomponent Reactions. International Journal of Heterocyclic Chemistry, 8, 18-25.
[34]  Bhaskaruni, S.V.H.S., Maddila, S., van Zyl, W.E. and Jonnalagadda, S.B. (2019) Four-Component Fusion Protocol with NiO/ZrO2 as a Robust Recyclable Catalyst for Novel 1, 4-Dihydropyridines. ACS Omega, 4, 21187-21196.
https://doi.org/10.1021/acsomega.9b02608
[35]  Cahyana, A.H., Liandi, A.R., Safitri, Y. and Yunarti, R.T. (2020) Synthesis of 1, 4-Dihydropiridine with Aromatic of Cinnamaldehyde Compound Using NiFe2o4 Mnps Catalyst and the Activity Test as Antioxidant. Rasayan Journal of Chemistry, 13, 1491-1497.
https://doi.org/10.31788/rjc.2020.1335700
[36]  Mathur, R., Negi, K.S., Shrivastava, R. and Nair, R. (2021) Recent Developments in the Nanomaterial-Catalyzed Green Synthesis of Structurally Diverse 1, 4-Dihydropyridines. RSC Advances, 11, 1376-1393.
https://doi.org/10.1039/d0ra07807g

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413