Female grasshoppers can affect the fitness of their offspring through their selection of oviposition site. Knowledge of soil type on oviposition, and its effects on subsequent development can provide guidelines for habitat manipulations that reduce the harmful effects of these pests on farmers’ fields. The influence of soil types on the oviposition site preference of variegated grasshopper (Zonocerus variegatus L.) reared some cassava (Manihot esculenta Crantz) varieties, was investigated in a cage trial carried out at the Bio factory laboratory, School of Agriculture and Food Sciences, Njala University, Sierra Leone during 2022/2023. The treatments comprised three soil types (Sandy, Loamy and Clay), each with three replications laid out in a randomized complete block design (RCBD) in wooden cages. Data were collected on the following development parameters including, Net reproductive growth ratio (R0), Generation time (Tc), Intrinsic rate of increase (rm), Finite rate of increase (λ), Doubling time (Dt), and overall survivorship. Findings revealed that, Z. variegatus L. preferred sandy soil in which, on average, most eggs were deposited (338, 6.62 ± 4.40), followed by loamy soil, 286 (5.53 ± 3.96), and then, clayey soil, 200 (3.91 ± 3.85); though, the differences were not significant. This study established that Z. variegatus deposited more eggs in sandy soil > loamy soil > clayey soil, respectively; and subsequent survivorship of the immature unto mature adult insect, revealed a similar order. This indicates that the sandy soil is the most preferred substrate for oviposition and subsequent development into adult insects.
References
[1]
Torto, S.J., Samura, A.E., Norman, P.E., Sundufu, A.J., Musa, D.P., Kanu, S.A., Quee, D.D. and Fomba, S.N. (2023) Farmers’ Perception on Severity, Crop Loss and Management Practices of Variegated Grasshopper (Zonocerus variegatus L.) on Cassava (Manihot esculenta Crantz) in Sierra Leone. Magna Scientia Advanced Research and Reviews, 9, 34-43. https://doi.org/10.30574/msarr.2023.9.1.0129
[2]
Mansaray, A., Sundufu, A.J., Samura, A.E., Massaquoi, F.B., Quee, D.D., Fomba, S.N. and Moseray, M.T. (2012) Cassava Genotype Evaluation for Grasshopper Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae) Susceptibility in Southern Sierra Leone. International Journal of Agriculture and Forestry, 2, 294-299. https://doi.org/10.5923/j.ijaf.20120206.05
[3]
Liu, S.B., Yin, G.M., Gao, B., Zhang, Y.Y., Xue, Y.L., Zhang, Y., Ma, C.Y., Shan, Y.M., Jia, M., Ding, H.J., Bai, C.L., Sun, L., Tian, Y.J. and Gao, X. (2017) Grassland Pests Control Strategies and Benefit Study in the Inner Mongolia. Animal Husbandry and Feed Science, 38, 55-56.
[4]
Li, H., Zhang, Y., Wang, G., Lowry, A., Huang, W., Dong, Y., Shang, S. and Luke, B. (2021) The Effects of Vegetation Type on Oedaleusdecorus asiaticus (Orthoptera: Acrididae) Oviposition and Hatching Success. Environmental Entomology, 50, 790-794. https://doi.org/10.1093/ee/nvab029
[5]
Li, Q., Liao, Z.C., Yang, G., Feng, C.H., Yang, Q.F., Luo, H.H., Jiang, C.X. and Wang, H.J. (2012) Effect of Vegetation and Soil on Oviposition of Locustamigratoria tibetensis Chen. Scientia Agricultura Sinica, 45, 656-665.
[6]
Ji, R., Xie, B.-Y., Li, Z., Li, D.-M. and Meng, D.-L. (2006) Spatial Distribution of the Oriental Migratory Locust (Orthoptera: Acrididae) Egg Pods Studied with GIS and GS. Acta Entomologica Sinica, 49, 410-415.
[7]
Bashir, M.O., Hassanali, A., Rai, M.M. and Saini, R.K. (2000) Changing Oviposition Preferences of the Desert Locust, Schistocerca gregaria, Suggest a Strong Species Predisposition for Gregarization. Journal of Chemistry and Ecology, 26, 1721-1733. https://doi.org/10.1023/A:1005599115497
[8]
Zhang, Y., Li, H.M., Liu, L.L., Wang, G.J. and Shang, S.Q. (2020) Effects of Different Soil Types and Soil Moisture Content on Egg Hatching of Oedaleusdecorus asiaticus. Journal ofEnvironmental Entomology, 42, 559-565.
[9]
Odell, R.T. (1974) Characteristics, Classification and Adaptation of Soils in Selected Areas in Sierra Leone, West Africa. College of Agriculture, University of Illinois at Urbana-Champaign, Urbana, 86-88. https://www.worldcat.org https://doi.org/10.5962/bhl.title.16654
[10]
Price, P.W. (1998) Insect Ecology. Wiley, New York.
[11]
Hamed, M. and Khattak, S.U. (1985) Red Flour Beetle: Development and Losses in Various Stored Food Stuffs. Sarhad Journal of Agriculture, 1, 97-101.
[12]
Minkenberg, O.P., Tatar, M. and Rosenheim, J.A. (1992) Egg Load as a Major Source of Variability in Insect Foraging and Oviposition Behavior. Oikos, 65, 134-142. https://doi.org/10.2307/3544896
[13]
Obata, S. (1997) The Influence of Aphids on the Behaviour of Adults of Ladybird Beetle, Harmonia axyridis (Col.: Coccinellidae). BioControl, 42, 103-106. https://doi.org/10.1007/BF02769885
[14]
Harmon, J.P., Lasey, J.E. and Ives, A.R. (1998) The Role of Vision and Color in the Close Proximity Foraging Behvior of Four Coccinellid Species. Oecologia, 115, 287-292. https://doi.org/10.1007/s004420050518
[15]
Han, B.Y. and Chen, Z.M. (2002) Composition of the Volatiles from Intact and Mechanically Pierced Tea Aphid-Tea Shoot Complexes and Their Attraction to Natural Enemies of the Tea Aphid. Journal of Agricultural and Food Chemistry, 50, 2571-2575. https://doi.org/10.1021/jf010681x
[16]
Carter, M.C. and Dixon, A.F.G. (1984) Honeydew: An Arrestant Stimulus for Coccinellids. Ecological Entomology, 9, 383-387. https://doi.org/10.1111/j.1365-2311.1984.tb00834.x
[17]
Hatano, E., Kumert, G., Bartram, S., Boland, W., Gershenzon, J. and Weiser, W.W. (2008) Do Aphid Colonies Amplify Their Emission of Alarm Pheromone? Journal of Chemical Ecology, 34, 1149-1152. https://doi.org/10.1007/s10886-008-9527-y
[18]
Francis, F., Lognay, G. and Haubruge, E. (2004) Olfactory Responses to Aphid and Host Plant Volatile Releases: (E)-β-Farnessene an Effective Kairomone for the Predator Adalia bipunctata. Journal of Chemical Ecology, 30, 741-755. https://doi.org/10.1023/B:JOEC.0000028429.13413.a2
[19]
Singh, S., Mishra, G. and Omkar, O. (2016) Perceived Prey Quantity Modulates Oviposition in the Ladybird Menochilus sexmaculatus. Journal of Ethology, 34, 59-64. https://doi.org/10.1007/s10164-015-0446-4
[20]
Hemptinne, J.L., Dixon, A.F.G. and Coffin, J. (2000) Attack Strategy of Ladybird Beetles (Coccinelliidae): Factors Shaping Their Numerical Response. Oecologia, 90, 238-245. https://doi.org/10.1007/BF00317181
[21]
Resetarits, W.J. (1996) Oviposition Site Choice and Life History Evolution. American Zoologist, 36, 205-215. https://doi.org/10.1093/icb/36.2.205
[22]
Bhatti, S.S., Harish, C., Bhatti, S.S. and Chandra, H. (1993) Life History of Desert Grass Hopper Pest Ochrilidia Geniculate (Boliver). Plant Protection Bulletin, 45, 16-18.
[23]
Wohltmann, A., Wendt, F.E. and Waubke, M. (1996) The Life Cycle and Parasitism of the European Grass Hopper Unit Eutrombidium trigonum (Hermann 1804) (Prostigmata Parasitengonae: Microthombidiidae), a Potential Agent for Biological Control of Grass Hoppers (Saltatoria). Experimental and Applied Acarology, 20, 545-561. https://doi.org/10.1007/BF00052806
[24]
Ingrisch, S. (1995) Phonology and Abundance of Grass Hoppers in the Alpine Zone of Must as Muragl, Engadie (Orthoptera Acrididae). Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 68, 7-22.
[25]
Ni, S.X., Jiang, J.J., Want, J.C., Gong, A.Q., Wantg, W.J. and Voss, F. (2000) Environmental Conditions Affecting Grass Hopper Epidemic in the Region Around Qingmnail Ake. Acta Prataculture Sinica, 9, 43-47.
[26]
Krebs, C.J. (1994) Ecology: The Experimental Analysis of Distribution and Abundance. 4th Edition, Harper Collins College Publishers, New York.
[27]
Carey, E., Buckner, S.D., Alberts, A.C., Hudson, R.D. and Lee, D., Eds. (2001) Protected Areas Management Strategy for Bahamian Terrestrial Vertebrates: Iguanas and Seabirds. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, Minnesota.
[28]
Liu, Z., Li, D., Gong, P. and Wu, K. (2004) Life Table Studies of the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on Different Host Plants. Environmental Entomology, 33, 1570-1576. https://doi.org/10.1603/0046-225X-33.6.1570
[29]
Sarfraz, M., Dosdall, L.M. and Keddie, B.A. (2007) Resistance of Some Cultivated Brassicaceae to Infestations by Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economics Entomology, 100, 215-224.
[30]
Xue, M., Pang, Y.H., Wang, H.T., Li, Q.L. and Liu, T.X. (2010) Effects of Four Host Plants on Biology and Food Utilization of the Cutworm, Spodoptera litura. Journal of Insect Science, 10, 22. https://doi.org/10.1673/031.010.2201
[31]
Anuga, S.W., Gordon, C., Boon, E. and Surugu, J.M.I. (2019) Determinants of Climate Smart Agriculture (CSA) Adoption among Smallholder Food Crop Farmers in the Techiman Municipality, Ghana. Ghana Journal of Geography, 11, 124-139.
[32]
Aryal, J.P., Jat, M.L., Sapkota, T.B., Chhetri, A.K., Kassie, M. and Maharjan, S. (2018) Adoption of Multiple Climate Smart Agricultural Practices in the Gangetic Plains of Bihar, India. International Journal of Climate Change Strategies and Management, 10, 407-427. https://doi.org/10.1108/IJCCSM-02-2017-0025
[33]
Chávez, J.P., Jungmann, D. and Siegmund, S. (2018) A Comparative Study of Integrated Pest Management Strategies Based on Impulsive Control. Journal of Biological Dynamics, 12, 318-341. https://doi.org/10.1080/17513758.2018.1446551
[34]
Carey, J.R. (1993) Applied Demography for Biologists with Special Emphasis on Insects. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780195066876.001.0001
[35]
Subagyo, V.N.O. and Hidayat, P. (2014) Life Table of the Silverleaf Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on Chili Pepper and Goat Weed at Temperatures 25˚C and 29˚C. Journal of Entomologia Indonesia, 11, 11-18. https://doi.org/10.5994/jei.11.1.11
Chen, Q., Li, N., Wang, X., Ma, L., Huang, J.B. and Huang, G.H. (2017) Age-Stage, Two-Sex Life Table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at Different Temperatures. PLOSONE, 12, e0173380. https://doi.org/10.1371/journal.pone.0173380
[38]
Dutta, S. and Roy, N. (2016) Life Table and Population Dynamics of a Major Pest, Leptocorisa acuta (Thunb.) (Hemiptera: Alydidae), on Rice and Non-Rice System. International Journal of Pure and Applied Bioscience, 4, 199-207. https://doi.org/10.18782/2320-7051.2202
[39]
Kakde, A.M., Patel, K.G. and Tayade, S. (2014) Role of Life Table in Insect Pest Management—A Review. IOSR Journal of Agriculture and Veterinary Science, 7, 40-43.
[40]
Roy, N. (2019) Life Table and Economic Threshold Concept for Ecologically Sustainable Management of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae) on Jute. Entomon, 44, 103-110. https://doi.org/10.33307/entomon.v44i2.436
[41]
Higashiura, Y. (1989) Survival of Eggs in the Gypsy Moth Lymantria dispar. II. Oviposition Site Selection in Changing Environments. The Journal of Animal Ecology, 58, 413-426. https://doi.org/10.2307/4839
[42]
Petranka, J.W. and Fakhoury, K. (1991) Evidence of a Chemically-Mediated Avoidance Response of Ovipositing Insects to Blue-Gills and Green Frog Tadpoles. Copeia, 1991, 243-239. https://doi.org/10.2307/1446271
[43]
Mitchell, R. (1975) The Evolution of Oviposition Tactics in the Bean Weevil, Callosobruchus maculatus (F.). Ecology, 56, 696-702. https://doi.org/10.2307/1935504
[44]
Williams, K.S. and Gilbert, L.E. (1981) Insects as Selective Agents on Plant Vegetative Morphology: Egg Mimicry Reduces Egg Laying by Butterflies. Science, 212, 467-469. https://doi.org/10.1126/science.212.4493.467
[45]
Pöykkö, H. (2006) Females and Larvae of a Geometrid Moth, Cleorodes lichenaria, Prefer a Lichen Host that Assures Shortest Larval Period. Environmental Entomology, 35, 1669-1676. https://doi.org/10.1093/ee/35.6.1669
[46]
Kelly, C.D. (2008) The Interrelationships between Resource-Holding Potential, Resource-Value and Reproductive Success in Territorial Males: How Much Variation Can We Explain? Behavioral Ecology and Sociobiology, 62, 855-871. https://doi.org/10.1007/s00265-007-0518-8