全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Probability Distributions in Astrophysics: XII. Truncation for the Gompertz Distribution

DOI: 10.4236/ijaa.2024.142007, PP. 101-119

Keywords: Stars: Normal, Stars: Luminosity Function, Mass Function Stars: Statistics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Analytical functions which fit the probability distributions of stars and galaxies can provide insight into how these distributions originate. In order to introduce a truncated version of the Gompertz distribution, we derive its probability density function, its distribution function, its average value, its second moment about the origin, its median, its random generation of values and a maximum likelihood estimator for its two unknown parameters. The astrophysical applications of the Gompertz distribution are the initial mass function for stars, the luminosity function for the galaxies of the Sloan Digital Sky Survey, the photometric maximum of galaxies visible in the GLADE+ catalog and a model for the mean absolute magnitude in the GLADE+ catalog as a function of the redshift.

References

[1]  Gompertz, B. (1825) On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. In a Letter to Francis Baily, Esq. F.R.S. &c. Philosophical Transactions of the Royal Society of London, 115, 513-583.
https://doi.org/10.1098/rstl.1825.0026
[2]  Aggarwal, R. and Kaur, M. (2020) Compelling Evidence of Oscillatory Behaviour of Hadronic Multiplicities in the Shifted Gompertz Distribution. Advances in High Energy Physics, 2020, Article ID: 5464682.
https://doi.org/10.1155/2020/5464682
[3]  Chawla, R. and Kaur, M. (2018) A New Distribution for Multiplicities in Leptonic and Hadronic Collisions at High Energies. Advances in High Energy Physics, 2018, Article ID: 5129341.
https://doi.org/10.1155/2018/5129341
[4]  Singla, A. and Kaur, M. (2020) Charged-Particle Multiplicity Moments as Described by Shifted Gompertz Distribution in , , and Collisions at High Energies. Advances in High Energy Physics, 2020, Article ID: 5192193.
[5]  Sharma, R., Aggarwal, R. and Kaur, M. (2023) Statistical Analysis of Neutrino-Induced Hadron Production from a Different Perspective. Physical Review D, 108, Article 113011.
https://doi.org/10.1103/physrevd.108.113011
[6]  Lenart, A. (2012) The Gompertz Distribution and Maximum Likelihood Estimation of Its Parameters: A Revision. MPDIR Work Paper-2012-008, Max Planck Institute for Demographic Research, Rostock, 19 p.
https://doi.org/10.4054/MPIDR-WP-2012-008
[7]  Lenart, A. (2012) The Moments of the Gompertz Distribution and Maximum Likelihood Estimation of Its Parameters. Scandinavian Actuarial Journal, 2014, 255-277.
https://doi.org/10.1080/03461238.2012.687697
[8]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[9]  Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.
https://doi.org/10.1109/tac.1974.1100705
[10]  Liddle, A.R. (2004) How Many Cosmological Parameters? Monthly Notices of the Royal Astronomical Society, 351, L49-L53.
https://doi.org/10.1111/j.1365-2966.2004.08033.x
[11]  Godlowski, W. and Szydowski, M. (2005) Constraints on Dark Energy Models from Supernovae. 1604-2004: Supernovae as Cosmological Lighthouses, Vol. 342, Padua, 15-19 June 2004, 508-516.
[12]  Kolmogoroff, A. (1941) Confidence Limits for an Unknown Distribution Function. The Annals of Mathematical Statistics, 12, 461-463.
https://doi.org/10.1214/aoms/1177731684
[13]  Smirnov, N. (1948) Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19, 279-281.
https://doi.org/10.1214/aoms/1177730256
[14]  Massey, F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46, 68-78.
https://doi.org/10.1080/01621459.1951.10500769
[15]  Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M., et al. (2008) The Monitor Project: Rotation of Low-Mass Stars in NGC 2362-Testing the Disc Regulation Paradigm at 5 Myr. Monthly Notices of the Royal Astronomical Society, 384, 675-686.
https://doi.org/10.1111/j.1365-2966.2007.12725.x
[16]  Moitinho, A., Alves, J., Huélamo, N. and Lada, C.J. (2001) NGC 2362: A Template for Early Stellar Evolution. The Astrophysical Journal, 563, L73-L76.
https://doi.org/10.1086/338503
[17]  Oliveira, J.M., Jeffries, R.D. and Van Loon, J.T. (2009) The Low-Mass Initial Mass Function in the Young Cluster NGC 6611. Monthly Notices of the Royal Astronomical Society, 392, 1034-1050.
https://doi.org/10.1111/j.1365-2966.2008.14140.x
[18]  Prisinzano, L., Damiani, F., Micela, G., Jeffries, R.D., Franciosini, E., Sacco, G.G., et al. (2016) The Gaia-ESO Survey: Membership and Initial Mass Function of the γ Velorum Cluster. Astronomy & Astrophysics, 589, Article No. A70.
https://doi.org/10.1051/0004-6361/201527875
[19]  Panwar, N., Pandey, A.K., Samal, M.R., Battinelli, P., Ogura, K., Ojha, D.K., et al. (2018) Young Cluster Berkeley 59: Properties, Evolution, and Star Formation. The Astronomical Journal, 155, Article 44.
https://doi.org/10.3847/1538-3881/aa9f1b
[20]  Blanton, M.R., Hogg, D.W., Bahcall, N.A., Brinkmann, J., Britton, M., Connolly, A.J., et al. (2003) The Galaxy Luminosity Function and Luminosity Density at Redshiftz = 0.1. The Astrophysical Journal, 592, 819-838.
https://doi.org/10.1086/375776
[21]  Dálya, G., Díaz, R., Bouchet, F.R., Frei, Z., Jasche, J., Lavaux, G., et al. (2022) GLADE+: An Extended Galaxy Catalogue for Multimessenger Searches with Advanced Gravitational-Wave Detectors. Monthly Notices of the Royal Astronomical Society, 514, 1403-1411.
https://doi.org/10.1093/mnras/stac1443
[22]  Schechter, P. (1976) An Analytic Expression for the Luminosity Function for Galaxies. The Astrophysical Journal, 203, 297-306.
https://doi.org/10.1086/154079
[23]  Zaninetti, L. (2021) New Probability Distributions in Astrophysics: V. The Truncated Weibull Distribution. International Journal of Astronomy and Astrophysics, 11, 133-149.
https://doi.org/10.4236/ijaa.2021.111008
[24]  Zaninetti, L. (2023) New Probability Distributions in Astrophysics: XI. Left Truncation for the Topp-Leone Distribution. International Journal of Astronomy and Astrophysics, 13, 154-165.
https://doi.org/10.4236/ijaa.2023.133009
[25]  Zaninetti, L. (2022) New Probability Distributions in Astrophysics: X. Truncation and Mass-Luminosity Relationship for the Frèchet Distribution. International Journal of Astronomy and Astrophysics, 12, 347-362.
https://doi.org/10.4236/ijaa.2022.124020
[26]  Zaninetti, L. (2021) New Probability Distributions in Astrophysics: VI. The Truncated Sujatha Distribution. International Journal of Astronomy and Astrophysics, 11, 517-529.
https://doi.org/10.4236/ijaa.2021.114028
[27]  Zaninetti, L. (2020) New Probability Distributions in Astrophysics: II. The Generalized and Double Truncated Lindley. International Journal of Astronomy and Astrophysics, 10, 39-55.
https://doi.org/10.4236/ijaa.2020.101004
[28]  Zaninetti, L. (2019) New Probability Distributions in Astrophysics: I. The Truncated Generalized Gamma. International Journal of Astronomy and Astrophysics, 9, 393-410.
https://doi.org/10.4236/ijaa.2019.94027
[29]  Zaninetti, L. (2017) A Left and Right Truncated Lognormal Distribution for the Stars. Advances in Astrophysics, 2, 197-213.
https://doi.org/10.22606/adap.2017.23005
[30]  Zaninetti, L. (2013) A Right and Left Truncated Gamma Distribution with Application to the Stars. Advanced Studies in Theoretical Physics, 7, 1139-1147.
https://doi.org/10.12988/astp.2013.310125
[31]  Zaninetti, L. (2013) The Initial Mass Function Modeled by a Left Truncated Beta Distribution. The Astrophysical Journal, 765, Article 128.
https://doi.org/10.1088/0004-637x/765/2/128
[32]  Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413