全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2024 

急性冠脉综合征的代谢组学研究进展
Progress in Metabolomics of Acute Coronary Syndromes

DOI: 10.12677/bp.2024.142014, PP. 105-115

Keywords: 急性冠脉综合征,代谢组学,生物标志物
Acute Coronary Syndrome
, Metabolomics, Biomarker

Full-Text   Cite this paper   Add to My Lib

Abstract:

急性冠脉综合征作为冠心病的常见临床表型,是以冠状动脉粥样硬化斑块破溃,并继发完全或不完全闭塞性血栓形成为病理基础的一组临床综合征,有发病急、病情重、病死率高等特点,但其发病机制仍尚不明朗。代谢组学作为一种新兴的平台技术,已成为诊断疾病和探索其发病机制的重要工具。为更好地了解急性冠状动脉综合征的发病机制,现就代谢组学在急性冠脉综合征研究中的应用进展做一综述,为其临床防治和相关风险管理提供见解和思路。
Acute coronary syndrome (ACS) is a group of clinical syndromes that frequently occurs with coronary heart disease. It is characterized by the rupture of atherosclerotic plaque in the coronary arteries with subsequent complete or incomplete occlusive thrombosis. The pathogenesis, however, is still unknown. Metabolomics, an emerging platform technology, has become an essential tool for diagnosing diseases and understanding their pathogenesis. In order to better understand the pathogenesis of acute coronary syndrome, this review tracks the development of metabolomics in the study of ACS, providing deeper knowledge and insights for clinical prevention, treatment, and risk management.

References

[1]  Gach O, El HZ, Lancellotti P. (2018) [Acute Coronary Syndrome]. Revue Médicale de Liège, 73, 243-250.
[2]  Puri, R. and Nissen, S. (2013) The Complementary Roles of Imaging and ‘Omics’ for Future Anti-Atherosclerotic Drug Development. Current Pharmaceutical Design, 19, 5963-5971.
https://doi.org/10.2174/13816128113199990365
[3]  Wishart, D.S., Guo, A., Oler, E., Wang, F., Anjum, A., Peters, H., Dizon, R., Sayeeda, Z., Tian, S., Lee, B.L., Berjanskii, M., Mah, R., Yamamoto, M., Jovel, J., Torres-Calzada, C., Hiebert-Giesbrecht, M., Lui, V.W., Varshavi, D., Varshavi, D., Allen, D., Arndt, D., Khetarpal, N., Sivakumaran, A., Harford, K., Sanford, S., Yee, K., Cao, X., Budinski, Z., Liigand, J., Zhang, L., Zheng, J., Mandal, R., Karu, N., Dambrova, M., Schi?th, H.B., Greiner, R. and Gautam, V. (2021) HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Research, 50, D622-D631.
https://doi.org/10.1093/nar/gkab1062
[4]  Hunter, W.G., Kelly, J.P., McGarrah, R.W., Khouri, M.G., Craig, D., Haynes, C., Ilkayeva, O., Stevens, R.D., Bain, J.R., Muehlbauer, M.J., Newgard, C.B., Felker, G.M., Hernandez, A.F., Velazquez, E.J., Kraus, W.E. and Shah, S.H. (2016) Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure with Preserved versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure. Journal of the American Heart Association, 5, e003190.
https://doi.org/10.1161/jaha.115.003190
[5]  Sun, H., Olson, K.C., Gao, C., Prosdocimo, D.A., Zhou, M., Wang, Z., Jeyaraj, D., Youn, J., Ren, S., Liu, Y., Rau, C.D., Shah, S., Ilkayeva, O., Gui, W., William, N.S., Wynn, R.M., Newgard, C.B., Cai, H., Xiao, X., Chuang, D.T., Schulze, P.C., Lynch, C., Jain, M.K. and Wang, Y. (2016) Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation, 133, 2038-2049.
https://doi.org/10.1161/circulationaha.115.020226
[6]  Lanfear, D.E., Gibbs, J.J., Li, J., She, R., Petucci, C., Culver, J.A., Tang, W.H.W., Pinto, Y.M., Williams, L.K., Sabbah, H.N. and Gardell, S.J. (2017) Targeted Metabolomic Profiling of Plasma and Survival in Heart Failure Patients. JACC: Heart Failure, 5, 823-832.
https://doi.org/10.1016/j.jchf.2017.07.009
[7]  Pouralijan Amiri, M., Khoshkam, M., Salek, R.M., Madadi, R., Faghanzadeh Ganji, G. and Ramazani, A. (2019) Metabolomics in Early Detection and Prognosis of Acute Coronary Syndrome. Clinica Chimica Acta, 495, 43-53.
https://doi.org/10.1016/j.cca.2019.03.1632
[8]  Dunn, W.B., Goodacre, R., Neyses, L. and Mamas, M. (2011) Integration of Metabolomics in Heart Disease and Diabetes Research: Current Achievements and Future Outlook. Bioanalysis, 3, 2205-2222.
https://doi.org/10.4155/bio.11.223
[9]  McGarrah, R.W., Crown, S.B., Zhang, G., Shah, S.H. and Newgard, C.B. (2018) Cardiovascular Metabolomics. Circulation Research, 122, 1238-1258.
https://doi.org/10.1161/circresaha.117.311002
[10]  Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., DuGar, B., Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y., Wu, Y., Schauer, P., Smith, J.D., Allayee, H., Tang, W.H.W., DiDonato, J.A., Lusis, A.J. and Hazen, S.L. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63.
https://doi.org/10.1038/nature09922
[11]  Teul, J., Garcia, A., Tu?ón, J., Martin-Ventura, J.L., Tarín, N., Bescós, L.L., Egido, J., Barbas, C. and Rupérez, F.J. (2011) Targeted and Non-Targeted Metabolic Time Trajectory in Plasma of Patients after Acute Coronary Syndrome. Journal of Pharmaceutical and Biomedical Analysis, 56, 343-351.
https://doi.org/10.1016/j.jpba.2011.05.020
[12]  Oakman, C., Tenori, L., Biganzoli, L., Santarpia, L., Cappadona, S., Luchinat, C. and Di Leo, A. (2011) Uncovering the Metabolomic Fingerprint of Breast Cancer. The International Journal of Biochemistry & Cell Biology, 43, 1010-1020.
https://doi.org/10.1016/j.biocel.2010.05.001
[13]  Krone, N., Hughes, B.A., Lavery, G.G., Stewart, P.M., Arlt, W. and Shackleton, C.H.L. (2010) Gas Chromatography/Mass Spectrometry (GC/MS) Remains a Pre-Eminent Discovery Tool in Clinical Steroid Investigations Even in the Era of Fast Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS). The Journal of Steroid Biochemistry and Molecular Biology, 121, 496-504.
https://doi.org/10.1016/j.jsbmb.2010.04.010
[14]  Sabatine, M.S., Liu, E., Morrow, D.A., Heller, E., McCarroll, R., Wiegand, R., Berriz, G.F., Roth, F.P. and Gerszten, R.E. (2005) Metabolomic Identification of Novel Biomarkers of Myocardial Ischemia. Circulation, 112, 3868-3875.
https://doi.org/10.1161/circulationaha.105.569137
[15]  Drexler, D.M., Reily, M.D. and Shipkova, P.A. (2010) Advances in Mass Spectrometry Applied to Pharmaceutical Metabolomics. Analytical and Bioanalytical Chemistry, 399, 2645-2653.
https://doi.org/10.1007/s00216-010-4370-8
[16]  Boulesteix, A.L. and Strimmer, K. (2006) Partial Least Squares: A Versatile Tool for the Analysis of High-Dimensional Genomic Data. Briefings in Bioinformatics, 8, 32-44.
https://doi.org/10.1093/bib/bbl016
[17]  Posma, J.M., Robinette, S.L., Holmes, E. and Nicholson, J.K. (2013) MetaboNetworks, an Interactive Matlab-Based Toolbox for Creating, Customizing and Exploring Sub-Networks from KEGG. Bioinformatics, 30, 893-895.
https://doi.org/10.1093/bioinformatics/btt612
[18]  Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S. and Xia, J. (2018) MetaboAnalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis. Nucleic Acids Research, 46, W486-W494.
https://doi.org/10.1093/nar/gky310
[19]  Lynch, M., Barallobre‐Barreiro, J., Jahangiri, M. and Mayr, M. (2016) Vascular Proteomics in Metabolic and Cardiovascular Diseases. Journal of Internal Medicine, 280, 325-338.
https://doi.org/10.1111/joim.12486
[20]  Soppert, J., Lehrke, M., Marx, N., Jankowski, J. and Noels, H. (2020) Lipoproteins and Lipids in Cardiovascular Disease: From Mechanistic Insights to Therapeutic Targeting. Advanced Drug Delivery Reviews, 159, 4-33.
https://doi.org/10.1016/j.addr.2020.07.019
[21]  Ferreira-Divino, L.F., Suvitaival, T., Rotbain Curovic, V., Tofte, N., Tro?t, K., Mattila, I.M., Theilade, S., Winther, S.A., Hansen, T.W., Frimodt-M?ller, M., Legido-Quigley, C. and Rossing, P. (2022) Circulating Metabolites and Molecular Lipid Species Are Associated With Future Cardiovascular Morbidity and Mortality in Type 1 Diabetes. Cardiovascular Diabetology, 21, Article No. 153.
https://doi.org/10.1186/s12933-022-01568-8
[22]  Surendran, A., Atefi, N., Zhang, H., Aliani, M. and Ravandi, A. (2021) Defining Acute Coronary Syndrome through Metabolomics. Metabolites, 11, Article 685.
https://doi.org/10.3390/metabo11100685
[23]  Tran, D.H. and Wang, Z.V. (2019) Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. Journal of the American Heart Association, 8, e012673.
https://doi.org/10.1161/jaha.119.012673
[24]  Wende, A.R., Brahma, M.K., McGinnis, G.R. and Young, M.E. (2017) Metabolic Origins of Heart Failure. JACC: Basic to Translational Science, 2, 297-310.
https://doi.org/10.1016/j.jacbts.2016.11.009
[25]  Tian, R. and Abel, E.D. (2001) Responses of GLUT4-Deficient Hearts to Ischemia Underscore the Importance of Glycolysis. Circulation, 103, 2961-2966.
https://doi.org/10.1161/01.cir.103.24.2961
[26]  Szablewski, L. (2017) Glucose Transporters in Healthy Heart and in Cardiac Disease. International Journal of Cardiology, 230, 70-75.
https://doi.org/10.1016/j.ijcard.2016.12.083
[27]  Heather, L.C., Pates, K.M., Atherton, H.J., Cole, M.A., Ball, D.R., Evans, R.D., Glatz, J.F., Luiken, J.J., Griffin, J.L. and Clarke, K. (2013) Differential Translocation of the Fatty Acid Transporter, FAT/CD36, and the Glucose Transporter, GLUT4, Coordinates Changes in Cardiac Substrate Metabolism during Ischemia and Reperfusion. Circulation: Heart Failure, 6, 1058-1066.
https://doi.org/10.1161/circheartfailure.112.000342
[28]  Taegtmeyer, H. (1978) Metabolic Responses to Cardiac Hypoxia. Increased Production of Succinate by Rabbit Papillary Muscles. Circulation Research, 43, 808-815.
https://doi.org/10.1161/01.res.43.5.808
[29]  Chouchani, E.T., Pell, V.R., Gaude, E., Aksentijevi?, D., Sundier, S.Y., Robb, E.L., Logan, A., Nadtochiy, S.M., Ord, E.N.J., Smith, A.C., Eyassu, F., Shirley, R., Hu, C., Dare, A.J., James, A.M., Rogatti, S., Hartley, R.C., Eaton, S., Costa, A.S.H., Brookes, P.S., Davidson, S.M., Duchen, M.R., Saeb-Parsy, K., Shattock, M.J., Robinson, A.J., Work, L.M., Frezza, C., Krieg, T. and Murphy, M.P. (2014) Ischaemic Accumulation of Succinate Controls Reperfusion Injury Through Mitochondrial ROS. Nature, 515, 431-435.
https://doi.org/10.1038/nature13909
[30]  Rauckhorst, A.J., Borcherding, N., Pape, D.J., Kraus, A.S., Scerbo, D.A. and Taylor, E.B. (2022) Mouse Tissue Harvest-Induced Hypoxia Rapidly Alters the in Vivo Metabolome, Between-Genotype Metabolite Level Differences, and 13c-Tracing Enrichments. Molecular Metabolism, 66, Article ID: 101596.
https://doi.org/10.1016/j.molmet.2022.101596
[31]  Kohlhauer, M., Dawkins, S., Costa, A.S.H., Lee, R., Young, T., Pell, V.R., Choudhury, R.P., Banning, A.P., Kharbanda, R.K., Saeb‐Parsy, K., Murphy, M.P., Frezza, C., Krieg, T., Channon, K.M. and Oxford Acute Myocardial Infarction (OxAMI) Study (2018) Metabolomic Profiling in Acute ST‐Segment-Elevation Myocardial Infarction Identifies Succinate as an Early Marker of Human Ischemia-Reperfusion Injury. Journal of the American Heart Association, 7, e007546.
https://doi.org/10.1161/jaha.117.007546
[32]  Hart, G.W. and Copeland, R.J. (2010) Glycomics Hits the Big Time. Cell, 143, 672-676.
https://doi.org/10.1016/j.cell.2010.11.008
[33]  Wittenbecher, C., ?tambuk, T., Kuxhaus, O., Rudman, N., Vu?kovi?, F., ?tambuk, J., Schiborn, C., Raheli?, D., Dietrich, S., Gornik, O., Perola, M., Boeing, H., Schulze, M.B. and Lauc, G. (2020) Plasma N-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study. Diabetes Care, 43, 661-668.
https://doi.org/10.2337/dc19-1507
[34]  Lim, S.Y., Hendra, C., Yeo, X.H., Tan, X.Y., Ng, B.H., Laserna, A.K.C., Tan, S.H., Chan, M.Y., Khan, S.H., Chen, S. and Li, S.F.Y. (2021) N-Glycan Profiles of Acute Myocardial Infarction Patients Reveal Potential Biomarkers for Diagnosis, Severity Assessment and Treatment Monitoring. Glycobiology, 32, 469-482.
https://doi.org/10.1093/glycob/cwab129
[35]  Barba, I., de León, G., Martín, E., Cuevas, A., Aguade, S., Candell‐Riera, J., Barrabés, J.A. and Garcia‐Dorado, D. (2008) Nuclear Magnetic Resonance‐Based Metabolomics Predicts Exercise‐induced Ischemia in Patients with Suspected Coronary Artery Disease. Magnetic Resonance in Medicine, 60, 27-32.
https://doi.org/10.1002/mrm.21632
[36]  Dhillon, O.S., Narayan, H.K., Quinn, P.A., Squire, I.B., Davies, J.E. and Ng, L.L. (2011) Interleukin 33 and ST2 in Non—ST-Elevation Myocardial Infarction: Comparison with Global Registry of Acute Coronary Events Risk Scoring and NT-proBNP. American Heart Journal, 161, 1163-1170.
https://doi.org/10.1016/j.ahj.2011.03.025
[37]  Barderas, M.G., Laborde, C.M., Posada, M., de la Cuesta, F., Zubiri, I., Vivanco, F. and Alvarez-Llamas, G. (2011) Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases. Journal of Biomedicine and Biotechnology, 2011, Article ID: 790132.
https://doi.org/10.1155/2011/790132
[38]  Roberts, L.D., McCombie, G., Titman, C.M. and Griffin, J.L. (2008) A Matter of Fat: An Introduction to Lipidomic Profiling Methods. Journal of Chromatography B, 871, 174-181.
https://doi.org/10.1016/j.jchromb.2008.04.002
[39]  Diehl, P., Nienaber, F., Zaldivia, M.T.K., Stamm, J., Siegel, P.M., Mellett, N.A., Wessinger, M., Wang, X., McFadyen, J.D., Bassler, N., Puetz, G., Htun, N.M., Braig, D., Habersberger, J., Helbing, T., Eisenhardt, S.U., Fuller, M., Bode, C., Meikle, P.J., Chen, Y.C. and Peter, K. (2019) Lysophosphatidylcholine Is a Major Component of Platelet Microvesicles Promoting Platelet Activation and Reporting Atherosclerotic Plaque Instability. Thrombosis and Haemostasis, 119, 1295-1310.
https://doi.org/10.1055/s-0039-1683409
[40]  Schober, A. and Siess, W. (2012) Lysophosphatidic Acid in Atherosclerotic Diseases. British Journal of Pharmacology, 167, 465-482.
https://doi.org/10.1111/j.1476-5381.2012.02021.x
[41]  Chorell, E., Olsson, T., Jansson, J. and Wennberg, P. (2020) Lysophospholipids as Predictive Markers of ST-Elevation Myocardial Infarction (STEMI) and Non-St-Elevation Myocardial Infarction (NSTEMI). Metabolites, 11, Article 25.
https://doi.org/10.3390/metabo11010025
[42]  Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., Shioda, T., Hansen, M., Yang, F., Niebergall, L.J., Vance, D.E., Tzoneva, M., Hart, A.C. and N??r, A.M. (2011) A Conserved SREBP-1/Phosphatidylcholine Feedback Circuit Regulates Lipogenesis in Metazoans. Cell, 147, 840-852.
https://doi.org/10.1016/j.cell.2011.09.045
[43]  Yin, X., de Carvalho, L.P., Chan, M.Y. and Li, S.F.Y. (2017) Integrated Metabolomics and Metallomics Analyses in Acute Coronary Syndrome Patients. Metallomics, 9, 734-743.
https://doi.org/10.1039/c7mt00071e
[44]  He, X. and Schuchman, E.H. (2018) Ceramide and Ischemia/Reperfusion Injury. Journal of Lipids, 2018, Article ID: 3646725.
https://doi.org/10.1155/2018/3646725
[45]  Chatterjee, S. (1998) Sphingolipids in Atherosclerosis and Vascular Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1523-1533.
https://doi.org/10.1161/01.atv.18.10.1523
[46]  Bielawska, A.E., Shapiro, J.P., Jiang, L., et al. (1997) Ceramide Is Involved in Triggering of Cardiomyocyte Apoptosis Induced by Ischemia and Reperfusion. The American Journal of Pathology, 151, 1257-1263.
[47]  Chen, H., Wang, Z., Qin, M., Zhang, B., Lin, L., Ma, Q., Liu, C., Chen, X., Li, H., Lai, W. and Zhong, S. (2021) Comprehensive Metabolomics Identified the Prominent Role of Glycerophospholipid Metabolism in Coronary Artery Disease Progression. Frontiers in Molecular Biosciences, 8, Article 632950.
https://doi.org/10.3389/fmolb.2021.632950
[48]  Laaksonen, R., Ekroos, K., Sysi-Aho, M., Hilvo, M., Vihervaara, T., Kauhanen, D., Suoniemi, M., Hurme, R., M?rz, W., Scharnagl, H., Stojakovic, T., Vlachopoulou, E., Lokki, M., Nieminen, M.S., Klingenberg, R., Matter, C.M., Hornemann, T., Jüni, P., Rodondi, N., R?ber, L., Windecker, S., Gencer, B., Pedersen, E.R., Tell, G.S., Nyg?rd, O., Mach, F., Sinisalo, J. and Lüscher, T.F. (2016) Plasma Ceramides Predict Cardiovascular Death in Patients with Stable Coronary Artery Disease and Acute Coronary Syndromes beyond LDL-cholesterol. European Heart Journal, 37, 1967-1976.
https://doi.org/10.1093/eurheartj/ehw148
[49]  White, P.J., McGarrah, R.W., Herman, M.A., Bain, J.R., Shah, S.H. and Newgard, C.B. (2021) Insulin Action, Type 2 Diabetes, and Branched-Chain Amino Acids: A Two-Way Street. Molecular Metabolism, 52, Article ID: 101261.
https://doi.org/10.1016/j.molmet.2021.101261
[50]  Arany, Z. and Neinast, M. (2018) Branched Chain Amino Acids in Metabolic Disease. Current Diabetes Reports, 18, Article No. 76.
https://doi.org/10.1007/s11892-018-1048-7
[51]  Neinast, M., Murashige, D. and Arany, Z. (2019) Branched Chain Amino Acids. Annual Review of Physiology, 81, 139-164.
https://doi.org/10.1146/annurev-physiol-020518-114455
[52]  McGarrah, R.W. and White, P.J. (2022) Branched-Chain Amino Acids in Cardiovascular Disease. Nature Reviews Cardiology, 20, 77-89.
https://doi.org/10.1038/s41569-022-00760-3
[53]  Xu, Y., Jiang, H., Li, L., Chen, F., Liu, Y., Zhou, M., Wang, J., Jiang, J., Li, X., Fan, X., Zhang, L., Zhang, J., Qiu, J., Wu, Y., Fang, C., Sun, H. and Liu, J. (2020) Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets. Circulation, 142, 49-64.
https://doi.org/10.1161/circulationaha.119.043581
[54]  Li, Z., Liu, X., Wang, J., Gao, J., Guo, S., Gao, K., Man, H., Wang, Y., Chen, J. and Wang, W. (2015) Analysis of Urinary Metabolomic Profiling for Unstable Angina Pectoris Disease Based on Nuclear Magnetic Resonance Spectroscopy. Molecular BioSystems, 11, 3387-3396.
https://doi.org/10.1039/c5mb00489f
[55]  Turer, A.T., Stevens, R.D., Bain, J.R., Muehlbauer, M.J., van der Westhuizen, J., Mathew, J.P., Schwinn, D.A., Glower, D.D., Newgard, C.B. and Podgoreanu, M.V. (2009) Metabolomic Profiling Reveals Distinct Patterns of Myocardial Substrate Use in Humans with Coronary Artery Disease or Left Ventricular Dysfunction during Surgical Ischemia/Reperfusion. Circulation, 119, 1736-1746.
https://doi.org/10.1161/circulationaha.108.816116
[56]  Lee, J.W., Miyawaki, H., Bobst, E.V., Hester, J.D., Ashraf, M. and Bobst, A.M. (1999) Improved Functional Recovery of Ischemic Rat Hearts Due to Singlet Oxygen Scavengers Histidine and Carnosine. Journal of Molecular and Cellular Cardiology, 31, 113-121.
https://doi.org/10.1006/jmcc.1998.0850
[57]  Bernstein, A.M., Willcox, B.J., Tamaki, H., Kunishima, N., Suzuki, M., Craig Willcox, D., Kristen Yoo, J.-S. and Perls, T.T. (2004) First Autopsy Study of an Okinawan Centenarian: Absence of Many Age-Related Diseases. The Journals of Gerontology: Series A, 59, 1195-1199.
https://doi.org/10.1093/gerona/59.11.1195
[58]  Vallejo, M., García, A., Tu?ón, J., García-Martínez, D., Angulo, S., Martin-Ventura, J.L., Blanco-Colio, L.M., Almeida, P., Egido, J. and Barbas, C. (2009) Plasma Fingerprinting with GC-MS in Acute Coronary Syndrome. Analytical and Bioanalytical Chemistry, 394, 1517-1524.
https://doi.org/10.1007/s00216-009-2610-6
[59]  Karlstaedt, A. (2021) Stable Isotopes for Tracing Cardiac Metabolism in Diseases. Frontiers in Cardiovascular Medicine, 8, Article 734364.
https://doi.org/10.3389/fcvm.2021.734364
[60]  Sauer, U. (2006) Metabolic Networks in Motion: 13C‐Based Flux Analysis. Molecular Systems Biology, 2, Article 62.
https://doi.org/10.1038/msb4100109
[61]  Jin, E.S., Lee, M.H. and Malloy, C.R. (2021) 13C NMR of Glutamate for Monitoring the Pentose Phosphate Pathway in Myocardium. NMR in Biomedicine, 34, e4533.
https://doi.org/10.1002/nbm.4533
[62]  Bakker, O.B., Aguirre-Gamboa, R., Sanna, S., Oosting, M., Smeekens, S.P., Jaeger, M., Zorro, M., V?sa, U., Withoff, S., Netea-Maier, R.T., Koenen, H.J.P.M., Joosten, I., Xavier, R.J., Franke, L., Joosten, L.A.B., Kumar, V., Wijmenga, C., Netea, M.G. and Li, Y. (2018) Integration of Multi-Omics Data and Deep Phenotyping Enables Prediction of Cytokine Responses. Nature Immunology, 19, 776-786.
https://doi.org/10.1038/s41590-018-0121-3
[63]  Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A. and Kim, D. (2015) Methods of Integrating Data to Uncover Genotype-Phenotype Interactions. Nature Reviews Genetics, 16, 85-97.
https://doi.org/10.1038/nrg3868
[64]  Yao, Q., Xu, Y., Yang, H., Shang, D., Zhang, C., Zhang, Y., Sun, Z., Shi, X., Feng, L., Han, J., Su, F., Li, C. and Li, X. (2015) Global Prioritization of Disease Candidate Metabolites Based on a Multi-Omics Composite Network. Scientific Reports, 5, Article No. 17201.
https://doi.org/10.1038/srep17201
[65]  Yang, P., Humphrey, S.J., Cinghu, S., Pathania, R., Oldfield, A.J., Kumar, D., Perera, D., Yang, J.Y.H., James, D.E., Mann, M. and Jothi, R. (2019) Multi-Omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Systems, 8, 427-445.E10.
https://doi.org/10.1016/j.cels.2019.03.012
[66]  Bodein, A., Scott-Boyer, M., Perin, O., Lê Cao, K. and Droit, A. (2021) Interpretation of Network-Based Integration from Multi-Omics Longitudinal Data. Nucleic Acids Research, 50, e27.
https://doi.org/10.1093/nar/gkab1200
[67]  Schüssler-Fiorenza Rose, S.M., Contrepois, K., Moneghetti, K.J., Zhou, W., Mishra, T., Mataraso, S., Dagan-Rosenfeld, O., Ganz, A.B., Dunn, J., Hornburg, D., Rego, S., Perelman, D., Ahadi, S., Sailani, M.R., Zhou, Y., Leopold, S.R., Chen, J., Ashland, M., Christle, J.W., Avina, M., Limcaoco, P., Ruiz, C., Tan, M., Butte, A.J., Weinstock, G.M., Slavich, G.M., Sodergren, E., McLaughlin, T.L., Haddad, F. and Snyder, M.P. (2019) A Longitudinal Big Data Approach for Precision Health. Nature Medicine, 25, 792-804.
https://doi.org/10.1038/s41591-019-0414-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413