全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进自抗扰的自治水下机器人运动控制系统研究
Research on Motion Control System of Autonomous Underwater Vehicle Based on Improved Active Disturbance Rejection

DOI: 10.12677/jee.2024.122003, PP. 19-28

Keywords: 自治水下机器人,运动控制,非线性函数,改进自抗扰
Autonomous Underwater Vehicle
, Motion Control, Nonlinear Function, Improved Self Disturbance Rejection

Full-Text   Cite this paper   Add to My Lib

Abstract:

自治水下机器人控制系统是一个具有时变性、不确定性以及强耦合性的非线性复杂系统,很难建立起准确的数学模型。针对干扰下AUV的运动控制问题,提出了一种改进型自抗扰控制器:在使用fal函数的自抗扰控制器基础上,提出了具有更好平滑性的改进非线性函数nal,并且基于nal函数设计了改进后的扩张状态观测器和非线性状态误差反馈控制器。最后通过Matlab/Simulink对AUV的航向控制模型进行仿真。仿真结果表明,与传统的自抗扰控制器相比,改进型自抗扰控制器能够有效提高扰动的估计能力,增强系统抗干扰能力。
Autonomous underwater vehicle is a nonlinear and complex system with time-varying, uncertain, and strong coupling characteristics, making it difficult to establish an accurate mathematical model. Aiming at the motion control problem of AUV under interference, an improved self disturbance rejection controller is proposed: based on the self disturbance rejection controller using the fal function, an improved nonlinear function nal with better smoothness is proposed, and an improved Extended State Observer and Nonlinear State Error Feedback Controller are designed based on the nal function. Finally, the heading control model of the AUV was simulated using Matlab/Simulink. The simulation results show that compared with traditional self disturbance rejection controllers, the improved self disturbance rejection controller can effectively improve the estimation ability of disturbances and enhance the system’s anti-interference ability.

References

[1]  邓广雯, 梁娇娇, 张驾祥, 等. 基于现场可编程门阵列的可重构手势交互教学机器人设计[J]. 电气技术, 2023, 24(10): 8-16.
[2]  钱丹杨, 周卫华, 帅学超. 智能电力线路巡检机器人的设计与实施[J]. 电气技术, 2022, 23(7): 46-49.
[3]  蔡光柱, 杨振, 郑鹏超. 大跨越输电线路巡检机器人系统的设计[J]. 电气技术, 2022, 23(4): 76-81.
[4]  姜婵娟. 遥控式水下机器人PID运动控制算法优化研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2010.
[5]  张利军, 齐雪, 赵杰梅, 等. 垂直面欠驱动自治水下机器人定深问题的自适应输出反馈控制[J]. 控制理论与应用, 2012, 29(10): 1371-1376.
[6]  张铭钧, 高萍, 徐建安. 基于神经网络的自治水下机器人广义预测控制[J]. 机器人, 2008, 30(1): 91-96.
[7]  Londhe, P.S., Patre, B.M., Waghmare, L.M. and Santhakumar, M. (2017) Robust Proportional Derivative (PD)—Like Fuzzy Control Designs for Diving and Steering Planes Control of an Autonomous Underwater Vehicle. Journal of Intelligent & Fuzzy Systems, 32, 2509-2522.
https://doi.org/10.3233/JIFS-16501
[8]  段永杰, 王江磊, 陈仁涛. 自抗扰控制技术研究及应用[J]. 决策探索(中), 2018(7): 85-86.
[9]  陈志旺, 张子振, 曹玉洁. 自抗扰fal函数改进及在四旋翼姿态控制中的应用[J]. 控制与决策, 2018, 33(10): 1901-1907.
[10]  Castaneda, L.A., Luviano-Juarez, A. and Chairez, I. (2015) Robust Trajectory Tracking of a Delta Robot through Adaptive Active Disturbance Rejection Control. IEEE Transactions on Control Systems Technology, 23, 1387-1398.
https://doi.org/10.1109/TCST.2014.2367313
[11]  王怡怡, 赵志良. 二自由度无人直升机的非线性自抗扰姿态控制[J]. 自动化学报, 2021, 47(8): 1951-1962.
[12]  严浙平, 赵玉飞, 陈涛. 海洋勘测水下无人航行器的自主控制技术研究[J]. 哈尔滨工程大学学报, 2013, 34(9): 1152-1158.
[13]  Yuh, J. (2000) Design and Control of Autonomous Underwater Robots: A Survey. Autonomous Robots, 8, 7-24.
https://doi.org/10.1023/A:1008984701078
[14]  Silpa-Anan, C. (2001) Autonomous Underwater Robot: Vision and Control. MSc. Thesis, Australian National University, Canberra.
[15]  赵蕊, 余琨, 郑文成, 等. 无人水下航行器分布式运动控制系统设计与仿真验证[J]. 中国舰船研究, 2014, 9(6): 92-99.
[16]  Madonski, R., Shao, S., Zhang, H., et al. (2019) General Error-Based Active Disturbance Rejection Control for Swift Industrial Implementations. Control Engineering Practice, 84, 218-229.
https://doi.org/10.1016/j.conengprac.2018.11.021
[17]  Zhu, E., Pang, J., Sun, N., et al. (2014) Airship Horizontal Trajectory Tracking Control Based on Active Disturbance Rejection Control (ADRC). Nonlinear Dynamics, 75, 725-734.
https://doi.org/10.1007/s11071-013-1099-x
[18]  朱良红, 张国强, 李宇欣, 等. 基于级联扩张观测器的永磁电机无传感器自抗扰控制策略[J]. 电工技术学报, 2022, 37(18): 4614-4624.
[19]  李思毅, 苏健勇, 杨贵杰. 基于自抗扰控制的永磁同步电机弱磁控制策略[J]. 电工技术学报, 2022, 37(23): 6135-6144.
[20]  孟建辉, 吴小龙, 张自力, 等. 三相隔离型AC-DC-DC电源自适应线性自抗扰控制方法及纹波抑制补偿策略[J]. 电工技术学报, 2023, 38(14): 3898-3908.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413