全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不对称有机催化反应的国内研究进展
Progress of Domestic Research of Asymmetric Organic Catalysis

DOI: 10.12677/jocr.2024.122021, PP. 236-248

Keywords: 不对称催化,有机催化,不对称反应,有机合成
Asymmetric Catalysis
, Organocatalysts, Asymmetric Reactions, Organic Synthesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,手性分子的合成已经是化学科学研究的一个核心领域。在众多已报道的合成方法中,不对称有机催化已成为获得手性化合物的最直接有效的方法之一。在过去的几十年里,不对称催化取得了重大进展,化学家们也设计并合成了各种不同类型的有机小分子催化剂。本文主要从不对称有机催化方面综述了近年来国内化学家在该方向的研究进展。在此,我们并未对所有文献进行罗列而是选取了有代表性的例子,以突出在这一领域取得的重要进展。
At present, the synthesis of chiral molecules has been a core research area in chemical science and technology. Among the plethora of reported synthetic methods, asymmetric organic catalysis has emerged as one of the most efficient and direct ways to obtain optically pure chiral compounds. Over the past several decades, significant progress has been achieved in asymmetric organic catalysis, and various types of organic small molecule catalysts have been carefully designed and synthesized by chemists. This article mainly reviews the recent progress of asymmetric catalysis made by Chinese chemists from asymmetric organic catalysis. Here, this review does not intend to be comprehensive, but only representative examples are selected to highlight the important progress made in this field.

References

[1]  戴立信, 陆熙炎, 朱光美. 手性技术的兴起[J]. 化学通报, 1995(6): 15-22+14.
[2]  Ma, S.M. (2011) Asymmetric Catalysis from a Chinese Perspective. Topics in Organometallic Chemistry, Vol. 36, Springer, Berlin, 1-354.
https://doi.org/10.1007/978-3-642-19472-6
[3]  Zhang, L., Fu, N.K. and Luo, S.Z. (2015) Pushing the Limits of Aminocatalysis: Enantioselective Transformations of α-Branched β-Ketocarbonyls and Vinyl Ketones by Chiral Primary Amines. Accounts of Chemical Research, 48, 986-997.
https://doi.org/10.1021/acs.accounts.5b00028
[4]  Xiao, X., Xu, K., Gao, Z.H., Zhu, Z.H., Ye, C., Zhao, B., Luo, S.Z., Ye, S., Zhou, Y.G., Xu, S., Zhu, S.F., Bao, H., Sun, W., Wang, X. and Ding, K. (2023) Biomimetic Asymmetric Catalysis. Science ChinaChemistry, 66, 1553-1633.
https://doi.org/10.1007/s11426-023-1578-y
[5]  Luo, S. and Zhang, L. (2012) Bio-Inspired Chiral Primary Amine Catalysis. Synlett, 23, 1575-1589.
https://doi.org/10.1055/s-0031-129068
[6]  Cai, M., Zhang, R., Yang, C. and Luo, S. (2022) Bio-Inspired Small Molecular Catalysis. Chinese Journal of Chemistry, 41, 548-559.
https://doi.org/10.1002/cjoc.202200628
[7]  Wang, D., Zhang, L. and Luo, S. (2017) Enantioselective Decarboxylative Alpha-Alkynylation of β-Ketocarbonyls via a Catalytic α-Imino Radical Intermediate. Organic Letters, 19, 4924-4927.
https://doi.org/10.1021/acs.orglett.7b02386
[8]  Jia, Z., Zhang, L. and Luo, S. (2022) Asymmetric C-H Dehydrogenative Allylic Alkylation by Ternary Photoredox-Cobalt-Chiral Primary Amine Catalysis under Visible Light. Journal of the American Chemical Society, 144, 10705-10710.
https://doi.org/10.1021/jacs.2c03299
[9]  Zhou, H., Wang, Y., Zhang, L., Cai, M. and Luo, S. (2017) Enantioselective Terminal Addition to Allenes by Dual Chiral Primary Amine/Palladium Catalysis. Journal of the American Chemical Society, 139, 3631-3634.
https://doi.org/10.1021/jacs.7b00437
[10]  Wang, Y., Zhang, J., You, C., Mi, X. and Luo, S. (2022) Catalytic Asymmetric Addition and Telomerization of Butadiene with Enamine Intermediates. CCS Chemistry, 4, 2267-2275.
https://doi.org/10.31635/ccschem.021.202101240
[11]  You, C., Shi, M., Mi, X. and Luo, S. (2023) Asymmetric α-Allylic Allenylation of β-Ketocarbonyls and Aldehydes by Synergistic Pd/Chiral Primary Amine Catalysis. Nature Communications, 14, Article No. 2911.
https://doi.org/10.1038/s41467-023-38488-4
[12]  Zhang, J., Wang, Y., You, C., Shi, M., Mi, X. and Luo, S. (2022) Asymmetric Coupling of β-Ketocarbonyls and Alkynes by Chiral Primary Amine/Rh Synergistic Catalysis. Organic Letters, 24, 1186-1189.
https://doi.org/10.1021/acs.orglett.1c04334
[13]  Cai, M., Xu, K., Li, Y., Nie, Z., Zhang, L. and Luo, S. (2021) Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. Journal of the American Chemical Society, 143, 1078-1087.
https://doi.org/10.1021/jacs.0c11787
[14]  Zhang, Q., Li, Y., Zhang, L. and Luo, S. (2021) Catalytic Asymmetric Disulfuration by a Chiral Bulky Three-Component Lewis Acid-Base. Angewandte Chemie International Edition, 60, 10971-10976.
https://doi.org/10.1002/anie.202101569
[15]  Zhang, Y., Du, Y., Huang, Z., Xu, J., Wu, X., Wang, Y., Wang, M., Yang, S., Webster, R.D. and Chi, Y.R. (2015) N-Heterocyclic Carbene-Catalyzed Radical Reactions for Highly Enantioselective β-Hydroxylation of Enals. Journal of the American Chemical Society, 137, 2416-2419.
https://doi.org/10.1021/ja511371a
[16]  Chen, X.Y., Chen, K.Q., Sun, D.Q. and Ye, S. (2017) N-Heterocyclic Carbene-Catalyzed Oxidative [3+2] Annulation of Dioxindoles and Enals: Cross Coupling of Homoenolate and Enolate. Chemical Science, 8, 1936-1941.
https://doi.org/10.1039/C6SC04135C
[17]  Wang, H., Wang, Y., Chen, X., Mou, C., Yu, S., Chai, H., Jin, Z. and Chi, Y.R. (2019) Chiral Nitroarenes as Enantioselective Single-Electron-Transfer Oxidants for Carbene-Catalyzed Radical Reactions. Organic Letters, 21, 7440-7444.
https://doi.org/10.1021/acs.orglett.9b02736
[18]  Yang, X., Wang, H., Jin, Z. and Chi, Y.R. (2021) Development of Green and Low-Cost Chiral Oxidants for Asymmetric Catalytic Hydroxylation of Enals. Green Synthesis and Catalysis, 2, 295-298.
https://doi.org/10.1016/j.gresc.2021.05.002
[19]  Chen, J. and Huang, Y. (2014) Asymmetric Catalysis with N-Heterocyclic Carbenes as Non-Covalent Chiral Templates. Nature Communications, 5, Article No. 3437.
https://doi.org/10.1038/ncomms4437
[20]  Guo, F., Chen, J. and Huang, Y. (2021) A Bifunctional N-Heterocyclic Carbene as a Non-Covalent Organocatalyst for Enantioselective Aza-Michael Addition Reactions. ACS Catalysis, 11, 6316-6324.
https://doi.org/10.1021/acscatal.1c01908
[21]  Li, E., Chen, J. and Huang, Y. (2022) Enantioselective Seleno-Michael Addition Reactions Catalyzed by a Chiral Bifunctional N-Heterocyclic Carbene with Noncovalent Activation. Angewandte Chemie International Edition, 61, e202202040.
https://doi.org/10.1002/anie.202202040
[22]  Li, X., Duan, M., Deng, Z., Shao, Q., Chen, M., Zhu, G., Houk, K.N. and Sun, J. (2020) Catalytic Enantioselective Synthesis of Chiral Tetraarylmethanes. Nature Catalysis, 3, 1010-1019.
https://doi.org/10.1038/s41929-020-00535-4
[23]  Li, Z., Li, Y., Li, X., Wu, M., He, M.L. and Sun, J. (2021) Organocatalytic Asymmetric Formal Oxidative Coupling for the Construction of All-Aryl Quaternary Stereocenters. Chemical Science, 12, 11793-11798.
https://doi.org/10.1039/D1SC03324G
[24]  Tan, X., Deng, Z., Wang, Q., Chen, S., Zhu, G. and Sun, J. (2023) Enantioselective Synthesis of Tetraarylmethanes through Meta-Hydroxyl-Directed Benzylic Substitution. Nature Synthesis, 2, 275-285.
https://doi.org/10.1038/s44160-022-00211-4
[25]  Zhang, J., Yu, P., Li, S.Y., Sun, H., Xiang, S.H., Wang, J.J., Houk, K.N. and Tan, B. (2018) Asymmetric Phosphoric Acid-Catalyzed Four-Component Ugi Reaction. Science, 361, 1087-1095.
https://doi.org/10.1126/science.aao6575
[26]  Guo, W., Zhou, Y., Xie, H., Yue, X., Jiang, F., Huang, H., Han, Z. and Sun, J. (2023) Visible-Light-Induced Organocatalytic Enantioselective N-H Insertion of α-Diazoesters Enabled by Indirect Free Carbene Capture. Chemical Science, 14, 843-848.
https://doi.org/10.1039/D2SC05149D
[27]  Pan, J.B., Zhang, X.G., Shi, Y.F., Han, A.C., Chen, Y.J., Ouyang, J., Li, M.L. and Zhou, Q.L. (2023) A Spiro Phosphamide Catalyzed Enantioselective Proton Transfer of Ylides in a Free Carbene Insertion into N-H Bonds. Angewandte Chemie International Edition, 62, e202300691.
https://doi.org/10.1002/anie.202300691
[28]  Liao, L. and Zhao, X. (2022) Indane-Based Chiral Aryl Chalcogenide Catalysts: Development and Applications in Asymmetric Electrophilic Reactions. Accounts of Chemical Research, 55, 2439-2453.
https://doi.org/10.1021/acs.accounts.2c00201
[29]  Liu, X., An, R., Zhang, X., Luo, J. and Zhao, X. (2016) Enantioselective Trifluoromethylthiolating Lactonization Catalyzed by an Indane-Based Chiral Sulfide. Angewandte Chemie International Edition, 55, 5846-5850.
https://doi.org/10.1002/anie.201601713
[30]  Luo, J., Cao, Q., Cao, X. and Zhao, X. (2018) Selenide-Catalyzed Enantioselective Synthesis of Trifluoromethylthiolated Tetrahydronaphthalenes by Merging Desymmetrization and Trifluoromethylthiolation. Nature Communications, 9, Article No. 527.
https://doi.org/10.1038/s41467-018-02955-0
[31]  Cao, Q., Luo, J. and Zhao, X. (2019) Chiral Sulfide Catalysis for Desymmetrizing Enantioselective Chlorination. Angewandte Chemie International Edition, 58, 1315-1319.
https://doi.org/10.1002/anie.201811621
[32]  Liao, L., Xu, X., Ji, J. and Zhao, X. (2022) Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. Journal of the American Chemical Society, 144, 16490-16501.
https://doi.org/10.1021/jacs.2c05668
[33]  Duan, Y. and Luo, S. (2022) Organosulfide Catalysis for Chiral Iodinated Molecules. Chem Catalysis, 2, 2828-2830.
https://doi.org/10.1016/j.checat.2022.10.037
[34]  Luo, H.Y., Li, Z.H., Zhu, D., Yang, Q., Cao, R.F., Ding, T.M. and Chen, Z.M. (2022) Chiral Selenide/Achiral Sulfonic Acid Cocatalyzed Atroposelective Sulfenylation of Biaryl Phenols via a Desymmetrization/Kinetic Resolution Sequence. Journal of the American Chemical Society, 144, 2943-2952.
https://doi.org/10.1021/jacs.1c09635
[35]  Xu, B., Shi, L.L., Zhang, Y.Z., Wu, Z.J., Fu, L.N., Luo, C.Q., Zhang, L.X., Peng, Y.G. and Guo, Q.X. (2014) Catalytic Asymmetric Direct α-Alkylation of Amino Esters by Aldehydes via Imine Activation. Chemical Science, 5, 1988-1991.
https://doi.org/10.1039/c3sc53314j
[36]  Chen, J., Gong, X., Li, J., Li, Y., Ma, J., Hou, C., Zhao, G., Yuan, W. and Zhao, B. (2018) Carbonyl Catalysis Enables a Biomimetic Asymmetric Mannich Reaction. Science, 360, 1438-1442.
https://doi.org/10.1126/science.aat4210
[37]  Ma, J., Zhou, Q., Song, G., Song, Y., Zhao, G., Ding, K. and Zhao, B. (2021) Enantioselective Synthesis of Pyroglutamic Acid Esters from Glycinate via Carbonyl Catalysis. Angewandte Chemie International Edition, 60, 10588-10592.
https://doi.org/10.1002/anie.202017306
[38]  Wen, W., Chen, L., Luo, M.J., Zhang, Y., Chen, Y.C., Ouyang, Q. and Guo, Q.X. (2018) Chiral Aldehyde Catalysis for the Catalytic Asymmetric Activation of Glycine Esters. Journal of the American Chemical Society, 140, 9774-9780.
https://doi.org/10.1021/jacs.8b06676
[39]  Wang, W.Z., Shen, H.R., Liao, J., Wen, W. and Guo, Q.X. (2022) A Chiral Aldehyde-Induced Tandem Conjugated Addition-Lactamization Reaction for Constructing Fully Substituted Pyroglutamic Acids. Organic Chemistry Frontiers, 9, 1422-1426.
https://doi.org/10.1039/D1QO01923F
[40]  Cheng, A., Zhang, L., Zhou, Q., Liu, T., Cao, J., Zhao, G., Zhang, K., Song, G. and Zhao, B. (2021) Efficient Asymmetric Biomimetic Aldol Reaction of Glycinates and Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie International Edition, 60, 20166-20172.
https://doi.org/10.1002/anie.202104031
[41]  Ma, J., Gao, B., Song, G., Zhang, R., Wang, Q., Ye, Z., Chen, W.W. and Zhao, B. (2022) Asymmetric α-Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angewandte Chemie International Edition, 61, e202200850.
https://doi.org/10.1002/anie.202200850
[42]  Wen, W., Luo, M.J., Yuan, Y., Liu, J.H., Wu, Z.L., Cai, T., Wu, Z.W., Ouyang, Q. and Guo, Q.X. (2020) Diastereodivergent Chiral Aldehyde Catalysis for Asymmetric 1,6-Conjugated Addition and Mannich Reactions. Nature Communications, 11, Article No. 5372.
https://doi.org/10.1038/s41467-020-19245-3
[43]  Shen, H.R., Li, C.X., Jiang, X., Lin, Y., Liu, J.H., Zhu, F., Wu, Z.L., Cai, T., Wen, W., He, R.X. and Guo, Q.X. (2023) Chiral Aldehyde Catalysis Enables Direct Asymmetric α-Substitution Reaction of N-Unprotected Amino Acids with Halohydrocarbons. Chemical Science, 14, 5665-5671.
https://doi.org/10.1039/D3SC01294H
[44]  Hou, C., Peng, B., Ye, S., Yin, Z., Cao, J., Xiao, X. and Zhao, B. (2022) Catalytic Asymmetric alpha C(sp3)-H Addition of Benzylamines to Aldehydes. Nature Catalysis, 5, 1061-1068.
https://doi.org/10.1038/s41929-022-00875-3
[45]  Ji, P., Liu, X., Xu, J., Zhang, X., Guo, J., Chen, W.W. and Zhao, B. (2022) Direct Asymmetric Alpha-C-H Addition of N-Unprotected Propargylic Amines to Trifluoromethyl Ketones by Carbonyl Catalysis. Angewandte Chemie International Edition, 61, e202206111.
https://doi.org/10.1002/anie.202206111
[46]  Chen, L., Luo, M.J., Zhu, F., Wen, W. and Guo, Q.X. (2019) Combining Chiral Aldehyde Catalysis and TransitionMetal Catalysis for Enantioselective α-Allylic Alkylation of Amino Acid Esters. Journal of the American Chemical Society, 141, 5159-5163.
https://doi.org/10.1021/jacs.9b01910
[47]  Liu, J.H., Wen, W., Liao, J., Shen, Q.W., Lin, Y., Wu, Z.L., Cai, T. and Guo, Q.X. (2022) Catalytic Asymmetric Tsuji-Trost α-Benzylation Reaction of N-Unprotected Amino Acids and Benzyl Alcohol Derivatives. Nature Communications, 13, Article No. 2509.
https://doi.org/10.1038/s41467-022-30277-9
[48]  Zhu, F., Li, C.X., Wu, Z.L., Cai, T., Wen, W. and Guo, Q.X. (2022) Chiral Aldehyde-Nickel Dual Catalysis Enables Asymmetric α-Propargylation of Amino Acids and Stereodivergent Synthesis of NP25302. Nature Communications, 13, Article No. 7290.
https://doi.org/10.1038/s41467-022-35062-2
[49]  Liu, J.H., Zhou, Q., Lin, Y., Wu, Z.L., Cai, T., Wen, W., Huang, Y.M. and Guo, Q.X. (2023) Modular Chiral-Aldehyde/Palladium Catalysis Enables Atom-Economical α-Allylation of N-Unprotected Amino Acid Esters with 1,3-Dienes and Allenes. ACS Catalysis, 13, 6013-6022.
https://doi.org/10.1021/acscatal.3c00790
[50]  Shen, Q.W., Wen, W. and Guo, Q.X. (2023) Chiral Aldehyde-Palladium Catalysis Enables Asymmetric Synthesis of α-Alkyl Tryptophans via Cascade Heck-Alkylation Reaction. Organic Letters, 17, 3163-3167.
https://doi.org/10.1021/acs.orglett.3c01119
[51]  Zhou, Q., Meng, W., Yang, J. and Du, H. (2018) A Continuously Regenerable Chiral Ammonia Borane for Asymmetric Transfer Hydrogenations. Angewandte Chemie International Edition, 57, 12111-12115.
https://doi.org/10.1002/anie.201806877
[52]  Chen, J., Gao, B., Feng, X., Meng, W. and Du, H. (2021) Relay Catalysis by Achiral Borane and Chiral Phosphoric Acid in the Metal-Free Asymmetric Hydrogenation of Chromones. Organic Letters, 23, 8565-8569.
https://doi.org/10.1021/acs.orglett.1c03286
[53]  Han, C., Meng, W., Feng, X. and Du, H. (2022) Asymmetric Intramolecular Hydroalkoxylation of 2-Vinylbenzyl Alcohols with Chiral Boro-Phosphates. Angewandte Chemie International Edition, 61, e202200100.
https://doi.org/10.1002/anie.202200100
[54]  Tian, J.J., Liu, N., Liu, Q.F., Sun, W. and Wang, X.C. (2021) Borane-Catalyzed Direct Asymmetric Vinylogous Mannich Reactions of Acyclic α,β-Unsaturated Ketones. Journal of the American Chemical Society, 143, 3054-3059.
https://doi.org/10.1021/jacs.1c00006
[55]  Zhang, M. and Wang, X.C. (2021) Bifunctional Borane Catalysis of a Hydride Transfer/Enantioselective [2+2] Cycloaddition Cascade. Angewandte Chemie International Edition, 60, 17185-17190.
https://doi.org/10.1002/anie.202106168
[56]  Zhang, Q.X., Li, Y., Wang, J., Yang, C., Liu, C.J., Li, X. and Cheng, J.P. (2020) B(C6F5)3/Chiral Phosphoric Acid Catalyzed Ketimine-Ene Reaction of 2-Aryl-3H-Indol-3-Ones and α-Methylstyrenes. Angewandte Chemie International Edition, 59, 4550-4556.
https://doi.org/10.1002/anie.201915226
[57]  Song, J. and Zheng, W.H. (2023) Synthesis of a C2-Symmetric Chiral Borinic Acid and Its Application in Catalytic Desymmetrization of 2,2-Disubstituted-1,3-Propanediols. Journal of the American Chemical Society, 145, 8338-8343.
https://doi.org/10.1021/jacs.3c02331

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413