全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Supplementary Irrigation on the Yield of Sorghum (Sorghum bicolor L. Moench) in the Context of Climate Change in the Dry Savannahs of Togo

DOI: 10.4236/ajcc.2024.132009, PP. 163-174

Keywords: Climate Change, Supplementary Irrigation, Sorghum Grain Yield, Dry Savannah, Togo

Full-Text   Cite this paper   Add to My Lib

Abstract:

Under the current context of climate change, supplementary irrigation may be needed for crop production resilience. We determined the effects of supplementary irrigation on sorghum grain yield in the dry Savannah region of Togo. A two-year trial was conducted in a controlled environment at AREJ, an agro-ecological center in Cinkassé. The plant material was sorghum variety Sorvato 28. The experimental design was a Completely Randomized Block with three replications and three treatments as follows: T0 control plot (rainfed conditions); T1 (supplementary irrigation from flowering to grain filling stage) and T2 (supplementary irrigation from planting to grain filling stage). Two irrigation techniques (furrow and Californian system) were used under each watering treatment. The results showed that irrigation technique significantly affected panicle length with no effect on 1000 grains mass. Panicle length and grain yields varied from 15.59 to 25.71 cm and 0.0 to 2.06 t?h?1, respectively, with the highest values (25.66 cm and 2.06 t?h?1, respectively) under the T2 treatment with the California system-based supplementary irrigation. The comparison of results obtained on treatment T0 and T2, shows that supplementary irrigation increased the yields by at least 68.62%. Supplementary irrigation during sowing and growing season (T2) improved sorghum yields in the dry savannahs of Togo, with a better performance of the California irrigation system.

References

[1]  Abera, K., Tana, T., & Takele, A. (2020). Effect of Rates and Time of Nitrogen Fertilizer Application on Yield and Yield Components of Sorghum [Sorghum bicolor (L.) Moench] at Raya Valley, Northern Ethiopia. International Journal of Plant Breeding, 7, 598-612.
[2]  Adewi, E., Badameli, K. M., & Dubreuil, V. (2010). Evolution des saisons des pluies potentiellement utiles au Togo de 1950 à 2000. Climatologie, 7, 89-107.
https://doi.org/10.4267/climatologie.489
[3]  Adjoussi, P. (2000). Changement climatique global: Évaluation de l’évolution des paramètres au Togo.
http://hdl.handle.net/1834/2754
[4]  African Union (2022). Compact Togo pour l’Alimentation et l’Agriculture. Rapport annuel.
https://www.afdb.org/sites/default/files/documents/publications/togo_compact_pour_lalimentation_et_lagriculture.pdf
[5]  Andom, O., Naz, H., Ogbazghi, W., Naz, A., Khan, H. H., & Singh, B. (2017). Nitrogen and Supplementary Irrigation Requirements of Sorghum (Sorghum bicolor L.) at Hamelmalo, Semiarid Regions of Eritrea (East Africa). International Journal of Agricultural Invention, 2, 124-129.
https://doi.org/10.46492/IJAI/2017.2.2.3
[6]  Atiglo-Gbenou, A., & Azouma, O. Y. (2023). Analysis of the Superposition of Meteorological Data and Maize (Zea mays) Planting Periods in Order to Reduce Production Losses Due to Climate Change in the Dry Savannah Zone of Togo. American Journal of Agricultural Science, Engineering, and Technology, 7, 39-43.
https://doi.org/10.54536/ajaset.v7i1.1175
[7]  Berry, P., Yassin, F., Belcher, K., & Lindenschmidt, K.-E. (2017). An Economic Assessment of Local Farm Multi-Purpose Surface Water Retention Systems under Future Climate Uncertainty. Sustainability, 9, Article 456.
https://doi.org/10.3390/su9030456
[8]  Bruns, H. A. (2015). Irrigation, Seeding Rates, and Row Type Effects on Grain Sorghum in the Midsouth. Agronomy Journal, 107, 9-12.
https://doi.org/10.2134/agronj14.0297
[9]  Carsky, R., Ndikawa, R., & Singh, L. (2002). Establishment of Optimum Plant Densities for Dry Season Sorghum Grown on Vertisols in the Semiarid Zones of Cameroon. African Crop Science Journal, 10, 23-30.
https://doi.org/10.4314/acsj.v10i1.27554
[10]  CARTO (2022). Centre d’Animation Rurale Ogaro (TOGO). Rapport d’activité annuelle.
[11]  Chen, Y., Marek, G. W., Marek, T. H., Porter, D. O., Brauer, D. K., & Srinivasan, R. (2021). Simulating the Effects of Agricultural Production Practices on Water Conservation and Crop Yields Using an Improved SWAT Model in the Texas High Plains, USA. Agricultural Water Management, 244, Article 106574.
https://doi.org/10.1016/j.agwat.2020.106574
[12]  d’Arc Coulibaly, P., Okae-Anti, D., Ouattara, B., Sawadogo, J., & Sedogo, M. (2020). Effect of Heat Stress on Soil Fertility and Sowing Date on Yield Components of Sorghum in the Sudanian Agro-Ecological Zone of Burkina Faso. Journal of Agricultural and Crop Research, 8, 140-146.
https://doi.org/10.33495/jacr_v8i7.20.116
[13]  Derese, S. A., Shimelis, H., Mwadzingeni, L., & Laing, M. (2018). Agro-Morphological Characterisation and Selection of Sorghum Landraces. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68, 585-595.
https://doi.org/10.1080/09064710.2018.1448884
[14]  Diarra, A., Da Silveria, S., & Zorom, M. (2015). Irrigation de complément et information climatique: De la recherche au renforcement des capacités d’adaptation institutionnelles et communautaires au Sahel.
https://idl-bnc-idrc.dspacedirect.org/server/api/core/bitstreams/01f7607d-97a1-491a-8ccc-d383f5482a84/content
[15]  DSID (2019). Agriculture: 886.360 tonnes de maïs produits entre 2018 et 2019.
https://manationtogo.com/agriculture-886-360-tonnes-de-mais-produits-entre-2018-et-2019/
[16]  Fadina, A. M. R., & Barjolle, D. (2018). Farmers’ Adaptation Strategies to Climate Change and Their Implications in the Zou Department of South Benin. Environments, 5, Article 15.
https://doi.org/10.3390/environments5010015
[17]  FAO (1990). Gestion des eaux en irrigation. Manuel de formation, méthodes d’irrigation, 74 p.
[18]  FAO (2008). Catalogue ouest africain des espèces et variétés végétales.
[19]  Fox, P., & Rockström, J. (2003). Supplemental Irrigation for Dry-Spell Mitigation of Rainfed Agriculture in the Sahel. Agricultural Water Management, 61, 29-50.
https://doi.org/10.1016/S0378-3774(03)00008-8
[20]  Getachew, F., Bayabil, H. K., Hoogenboom, G., Teshome, F. T., & Zewdu, E. (2021). Irrigation and Shifting Planting Date as Climate Change Adaptation Strategies for Sorghum. Agricultural Water Management, 255, Article 106988.
https://doi.org/10.1016/j.agwat.2021.106988
[21]  Gnon, T., & Azouma, Y. O. (2018). Démarche d’intégration du changement climatique dans l’amélioration de la production céréalière des savanes sèches du Togo. Bulletin de la Recherche Agronomique du Bénin (BRAB), 12-25.
[22]  Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate Impacts on Agriculture: Implications for Crop Production. Agronomy Journal, 103, 351-370.
https://doi.org/10.2134/agronj2010.0303
[23]  ITRA (2005). Stratification du Togo en zones homogènes pour la recherche agronomique. Rapport d’activité, 104 p.
[24]  Jabereldar, A. A., El Naim, A. M., Abdalla, A. A., & Dagash, Y. M. (2017). Effect of Water Stress on Yield and Water Use Efficiency of Sorghum (Sorghum bicolor L. Moench) in Semi-Arid Environment. International Journal of Agriculture and Forestry, 7, 1-6.
[25]  Mohammed, A., & Misganaw, A. (2022). Modeling Future Climate Change Impacts on Sorghum (Sorghum bicolor) Production with Best Management Options in Amhara Region, Ethiopia. CABI Agriculture and Bioscience, 3, Article No. 22.
https://doi.org/10.1186/s43170-022-00092-9
[26]  Rao, C. S., Lal, R., Prasad, J. V., Gopinath, K. A., Singh, R., Jakkula, V. S., Sahrawat, K. L., Venkateswarlu, B., Sikka, A. K., & Virmani, S. M. (2015). Potential and Challenges of Rainfed Farming in India. Advances in Agronomy, 133, 113-181.
https://doi.org/10.1016/bs.agron.2015.05.004
[27]  REEM (2022). Premier rapport sur l’état de l’environnement marin du Togo. Projet d’Amélioration du Système d’Information Environnementale au Togo (PASIET).
[28]  Sigua, G. C., Stone, K. C., Bauer, P. J., & Szogi, A. A. (2020). Efficacy of Supplemental Irrigation and Nitrogen Management on Enhancing Nitrogen Availability and Urease Activity in Soils with Sorghum Production. Sustainability, 12, Article 8358.
https://doi.org/10.3390/su12208358
[29]  Sun, J., Gao, P., Wang, R., Niu, X., & Wang, B. (2018). Technology and the Effects of Supplemental Irrigation with Catchment Rainwater on Maize in the Hilly-Arid Area of Northern China. Transactions of the ASABE, 61, 549-557.
https://doi.org/10.13031/trans.12430
[30]  Togo, A. (2019). Effets de la fertilisation et de la date de semis sur des variétés de sorgho à double usage. Mémoire de fin de cycle Université IPR/IFRA de Katibougou, 50 p.
[31]  Wale, A., Sebnie, W., Girmay, G., & Beza, G. (2019). Evaluation of the Potentials of Supplementary Irrigation for Improvement of Sorghum Yield in Wag-Himra, North Eastern, Amhara, Ethiopia. Cogent Food & Agriculture, 5, Article 1664203.
https://doi.org/10.1080/23311932.2019.1664203
[32]  WOCAT (2018). Système Californien d’irrigation à basse pression.
[33]  Yemane, M., & Habtamu, T. (2019). Response of Sorghum (Sorghum bicolor L.) to Supplementary Irrigation in Raya Valley, Northern Ethiopia. International Journal of Agriculture and Biosciences, 8, 1-5.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133