全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Soil Carbon Pool as Influenced by Soil Microbial Activity—An Overview

DOI: 10.4236/ajcc.2024.132010, PP. 175-193

Keywords: Soil Carbon, Microorganisms, Decomposition, Carbon Storage, and Land-Use Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil is a significant carbon reservoir with the capacity to store carbon twice as much as the atmosphere or plants. Given the significant potential of soil to capture and store atmospheric CO2, it presents a viable solution for mitigating the present and future impacts of climate change. However, due to its high susceptibility to global environmental issues like land degradation, loss of biodiversity, and climate change, monitoring and protecting soil carbon pools is a complex challenge. Intensive agricultural operations have detrimental effects on the soil, including the rapid breakdown of soil organic carbon, which releases excess carbon into the air, causing increased atmospheric CO2 levels and a depletion of the soil carbon reserves. The diversity and abundance of soil microbial communities play a crucial role in controlling essential ecosystem processes, including the decomposition of organic matter and nutrient cycling, including carbon. Heterotrophic soil microorganisms facilitate the soil organic matter turnover to obtain the nutrients and energy required for their growth and maintenance. Therefore, the microbial residues and exudates have up to 80% carbon in the stable soil organic matter fractions. This overview attempts to summarize the information on various carbon pools, soil carbon interaction with microbes, impacts on environmental changes, and strategies to enhance the storage of belowground carbon.

References

[1]  Allison, S. D., & Treseder, K. K. (2008). Warming and Drying Suppress Microbial Activity and Carbon Cycling in Boreal Forest Soils. Global Change Biology, 14, 2898-2909.
https://doi.org/10.1111/j.1365-2486.2008.01716.x
[2]  Badri, D. V., & Vivanco, J. M. (2009). Regulation and Function of Root Exudates. Plant, Cell & Environment, 32, 666-681.
https://doi.org/10.1111/j.1365-3040.2009.01926.x
[3]  Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial Contributions to Climate Change through Carbon Cycle Feedbacks. The ISME Journal, 2, 805-814.
https://doi.org/10.1038/ismej.2008.58
[4]  Bastida, F., Eldridge, D. J., García, C., Kenny Png, G., Bardgett, R. D., & Delgado-Baquerizo, M. (2021). Soil Microbial Diversity-Biomass Relationships Are Driven by Soil Carbon Content across Global Biomes. The ISME Journal, 15, 2081-2091.
https://doi.org/10.1038/s41396-021-00906-0
[5]  Berendsen, R. L., Pieterse, C. M., & Bakker, P. A. (2012). The Rhizosphere Microbiome and Plant Health. Trends in Plant Science, 17, 478-486.
https://doi.org/10.1016/j.tplants.2012.04.001
[6]  Blanco-Canqui, H. (2022). Cover Crops and Carbon Sequestration: Lessons from US Studies. Soil Science Society of America Journal, 86, 501-519.
https://doi.org/10.1002/saj2.20378
[7]  Blanco-Canqui, H., & Lal, R. (2004). Mechanisms of Carbon Sequestration in Soil Aggregates. Critical Reviews in Plant Sciences, 23, 481-504.
https://doi.org/10.1080/07352680490886842
[8]  Blanco-Canqui, H., Shapiro, C., Jasa, P., & Iqbal, J. (2021). No-Till and Carbon Stocks: Is Deep Soil Sampling Necessary? Insights from Long-Term Experiments. Soil and Tillage Research, 206, Article ID: 104840.
https://doi.org/10.1016/j.still.2020.104840
[9]  Buckeridge, K. M., La Rosa, A. F., Mason, K. E., Whitaker, J., McNamara, N. P., Grant, H. K., & Ostle, N. J. (2020). Sticky Dead Microbes: Rapid Abiotic Retention of Microbial Necromass in Soil. Soil Biology and Biochemistry, 149, Article ID: 107929.
https://doi.org/10.1016/j.soilbio.2020.107929
[10]  Cleveland, C. C., & Liptzin, D. (2007). C:N:P Stoichiometry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry, 85, 235-252.
https://doi.org/10.1007/s10533-007-9132-0
[11]  Craine, J., Wedin, D., Chapin, F., & Reich, P. (2003). Relationship between the Structure of Root Systems and Resource Use for 11 North American Grassland Plants. Plant Ecology, 165, 85-100.
https://doi.org/10.1023/A:1021414615001
[12]  Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., Snoek, B., Fang, S., Zhou, G., & Allison, S. D. (2016). Quantifying Global Soil Carbon Losses in Response to Warming. Nature, 540, 104-108.
https://doi.org/10.1038/nature20150
[13]  DeAngelis, K. M., Brodie, E. L., DeSantis, T. Z., Andersen, G. L., Lindow, S. E., & Firestone, M. K. (2009). Selective Progressive Response of Soil Microbial Community to Wild Oat Roots. The ISME Journal, 3, 168-178.
https://doi.org/10.1038/ismej.2008.103
[14]  Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-González, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T., Singh, B. K., & Fierer, N. (2018). A Global Atlas of the Dominant Bacteria Found in Soil. Science, 359, 320-325.
https://doi.org/10.1126/science.aap9516
[15]  Domeignoz-Horta, L. A., Pold, G., Liu, X.-J. A., Frey, S. D., Melillo, J. M., & DeAngelis, K. M. (2020). Microbial Diversity Drives Carbon Use Efficiency in a Model Soil. Nature Communications, 11, Article No. 3684.
https://doi.org/10.1038/s41467-020-17502-z
[16]  Ebbisa, A. (2022). Mechanisms Underlying Cereal/Legume Intercropping as Nature-Based Biofortification: A Review. Food Production, Processing and Nutrition, 4, 19.
https://doi.org/10.1186/s43014-022-00096-y
[17]  Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science, 320, 1034-1039.
https://doi.org/10.1126/science.1153213
[18]  Fang, H., Cheng, S., Yu, G., Xu, M., Wang, Y., Li, L., Dang, X., Wang, L., & Li, Y. (2014). Experimental Nitrogen Deposition Alters the Quantity and Quality of Soil Dissolved Organic Carbon in an Alpine Meadow on the Qinghai-Tibetan Plateau. Applied Soil Ecology, 81, 1-11.
https://doi.org/10.1016/j.apsoil.2014.04.007
[19]  Fellbaum, C. R., Gachomo, E. W., Beesetty, Y., Choudhari, S., Strahan, G. D., Pfeffer, P. E., Kiers, E. T., & Bücking, H. (2012). Carbon Availability Triggers Fungal Nitrogen Uptake and Transport in Arbuscular Mycorrhizal Symbiosis. Proceedings of the National Academy of Sciences, 109, 2666-2671.
https://doi.org/10.1073/pnas.1118650109
[20]  Fernández-Romero, M., Lozano-García, B., & Parras-Alcántara, L. (2014). Topography and Land Use Change Effects on the Soil Organic Carbon Stock of Forest Soils in Mediterranean Natural Areas. Agriculture, Ecosystems & Environment, 195, 1-9.
https://doi.org/10.1016/j.agee.2014.05.015
[21]  Fierer, N., & Jackson, R. B. (2006). The Diversity and Biogeography of Soil Bacterial Communities. Proceedings of the National Academy of Sciences, 103, 626-631.
https://doi.org/10.1073/pnas.0507535103
[22]  Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., & Gibbs, H. K. (2005). Global Consequences of Land Use. Science, 309, 570-574.
https://doi.org/10.1126/science.1111772
[23]  Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature, 450, 277-280.
https://doi.org/10.1038/nature06275
[24]  Francaviglia, R., Di Bene, C., Farina, R., & Salvati, L. (2017). Soil Organic Carbon Sequestration and Tillage Systems in the Mediterranean Basin: A Data Mining Approach. Nutrient Cycling in Agroecosystems, 107, 125-137.
https://doi.org/10.1007/s10705-016-9820-z
[25]  Giller, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of Heavy Metals to Microorganisms and Microbial Processes in Agricultural Soils: A Review. Soil Biology and Biochemistry, 30, 1389-1414.
https://doi.org/10.1016/S0038-0717(97)00270-8
[26]  Glaser, B., Wiedner, K., Seelig, S., Schmidt, H.-P., & Gerber, H. (2015). Biochar Organic Fertilizers from Natural Resources as Substitute for Mineral Fertilizers. Agronomy for Sustainable Development, 35, 667-678.
https://doi.org/10.1007/s13593-014-0251-4
[27]  Gloor, M., Gatti, L., Brienen, R., Feldpausch, T., Phillips, O., Miller, J., Ometto, J., Rocha, H., Baker, T., & De Jong, B. (2012). The Carbon Balance of South America: A Review of the Status, Decadal Trends and Main Determinants. Biogeosciences, 9, 5407-5430.
https://doi.org/10.5194/bg-9-5407-2012
[28]  Godbold, D. L., Hoosbeek, M. R., Lukac, M., Cotrufo, M. F., Janssens, I. A., Ceulemans, R., Polle, A., Velthorst, E. J., Scarascia-Mugnozza, G., & De Angelis, P. (2006). Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter. Plant and Soil, 281, 15-24.
https://doi.org/10.1007/s11104-005-3701-6
[29]  Gougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The Role of Soil Microbes in the Global Carbon Cycle: Tracking the Below-Ground Microbial Processing of Plant-Derived Carbon for Manipulating Carbon Dynamics in Agricultural Systems. Journal of the Science of Food and Agriculture, 94, 2362-2371.
https://doi.org/10.1002/jsfa.6577
[30]  Grimoldi, A. A., Kavanová, M., Lattanzi, F. A., Schäufele, R., & Schnyder, H. (2006). Arbuscular Mycorrhizal Colonization on Carbon Economy in Perennial Ryegrass: Quantification by 13CO2/12CO2 Steady-State Labelling and Gas Exchange. New Phytologist, 172, 544-553.
https://doi.org/10.1111/j.1469-8137.2006.01853.x
[31]  Guo, Y., Fan, R., Zhang, X., Zhang, Y., Wu, D., McLaughlin, N., Zhang, S., Chen, X., Jia, S., & Liang, A. (2020). Tillage-Induced Effects on SOC through Changes in Aggregate Stability and Soil Pore Structure. Science of the Total Environment, 703, Article ID: 134617.
https://doi.org/10.1016/j.scitotenv.2019.134617
[32]  Haddaway, N. R., Hedlund, K., Jackson, L. E., Kätterer, T., Lugato, E., Thomsen, I. K., Jørgensen, H. B., & Isberg, P.-E. (2017). How Does Tillage Intensity Affect Soil Organic Carbon? A Systematic Review. Environmental Evidence, 6, 1-48.
https://doi.org/10.1186/s13750-016-0079-2
[33]  Hossain, M. B., Rahman, M. M., Biswas, J. C., Miah, M. M. U., Akhter, S., Maniruzzaman, M., Choudhury, A. K., Ahmed, F., Shiragi, M. H. K., & Kalra, N. (2017). Carbon Mineralization and Carbon Dioxide Emission from Organic Matter Added Soil under Different Temperature Regimes. International Journal of Recycling of Organic Waste in Agriculture, 6, 311-319.
https://doi.org/10.1007/s40093-017-0179-1
[34]  Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A., & Verheijen, F. (2017). Biochar Boosts Tropical but Not Temperate Crop Yields. Environmental Research Letters, 12, Article ID: 053001.
https://doi.org/10.1088/1748-9326/aa67bd
[35]  Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon Flow in the Rhizosphere: Carbon Trading at the Soil-Root Interface. Springer.
https://doi.org/10.1007/s11104-009-9925-0
[36]  Kallenbach, C. M., Frey, S. D., & Grandy, A. S. (2016). Direct Evidence for Microbial-Derived Soil Organic Matter Formation and Its Ecophysiological Controls. Nature Communications, 7, Article No. 13630.
https://doi.org/10.1038/ncomms13630
[37]  Khatoon, H., Solanki, P., Narayan, M., Tewari, L., Rai, J., & Hina Khatoon, C. (2017). Role of Microbes in Organic Carbon Decomposition and Maintenance of Soil Ecosystem. International Journal of Chemical Studies, 5, 1648-1656.
[38]  Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., & von Lützow, M. (2008). An Integrative Approach of Organic Matter Stabilization in Temperate Soils: Linking Chemistry, Physics, and Biology. Journal of Plant Nutrition and Soil Science, 171, 5-13.
https://doi.org/10.1002/jpln.200700215
[39]  Kuzyakov, Y., & Gavrichkova, O. (2010). Time Lag between Photosynthesis and Carbon Dioxide Efflux from Soil: A Review of Mechanisms and Controls. Global Change Biology, 16, 3386-3406.
https://doi.org/10.1111/j.1365-2486.2010.02179.x
[40]  Lal, R. (2016). Soil Health and Carbon Management. Food and Energy Security, 5, 212-222.
https://doi.org/10.1002/fes3.96
[41]  Lal, R., Follett, R. F., Stewart, B. A., & Kimble, J. M. (2007). Soil Carbon Sequestration to Mitigate Climate Change and Advance Food Security. Soil Science, 172, 943-956.
https://doi.org/10.1097/ss.0b013e31815cc498
[42]  Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The Influence of Soil Properties on the Structure of Bacterial and Fungal Communities across Land-Use Types. Soil Biology and Biochemistry, 40, 2407-2415.
https://doi.org/10.1016/j.soilbio.2008.05.021
[43]  Liu, X., Yang, T., Wang, Q., Huang, F., & Li, L. (2018). Dynamics of Soil Carbon and Nitrogen Stocks after Afforestation in Arid and Semi-Arid Regions: A Meta-Analysis. Science of the Total Environment, 618, 1658-1664.
https://doi.org/10.1016/j.scitotenv.2017.10.009
[44]  Liu, Z., Wu, X., Liu, W., Bian, R., Ge, T., Zhang, W., Zheng, J., Drosos, M., Liu, X., & Zhang, X. (2020). Greater Microbial Carbon Use Efficiency and Carbon Sequestration in Soils: Amendment of Biochar versus Crop Straws. GCB Bioenergy, 12, 1092-1103.
https://doi.org/10.1111/gcbb.12763
[45]  McCulley, R. L., Burke, I. C., Nelson, J. A., Lauenroth, W. K., Knapp, A. K., & Kelly, E. F. (2005). Regional Patterns in Carbon Cycling across the Great Plains of North America. Ecosystems, 8, 106-121.
https://doi.org/10.1007/s10021-004-0117-8
[46]  Nguyen, B. T., Lehmann, J., Hockaday, W. C., Joseph, S., & Masiello, C. A. (2010). Temperature Sensitivity of Black Carbon Decomposition and Oxidation. Environmental Science & Technology, 44, 3324-3331.
https://doi.org/10.1021/es903016y
[47]  Olsson, P. A., & Johnson, N. C. (2005). Tracking Carbon from the Atmosphere to the Rhizosphere. Ecology Letters, 8, 1264-1270.
https://doi.org/10.1111/j.1461-0248.2005.00831.x
[48]  Omar, Z., Bouajila, A., Chniguir, N., & Hamed, Y. (2023). Organic Matter Mineralization, Aggregation, and Aggregate-Associated Organic Carbon in Saline Soil of Arid Region of Tunisia: A Laboratory Incubation. Arabian Journal of Geosciences, 16, Article No. 554.
https://doi.org/10.1007/s12517-023-11676-8
[49]  Pan, G., Xu, X., Smith, P., Pan, W., & Lal, R. (2010). An Increase in Topsoil SOC Stock of China’s Croplands between 1985 and 2006 Revealed by Soil Monitoring. Agriculture, Ecosystems & Environment, 136, 133-138.
https://doi.org/10.1016/j.agee.2009.12.011
[50]  Parniske, M. (2008). Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nature Reviews Microbiology, 6, 763-775.
https://doi.org/10.1038/nrmicro1987
[51]  Philippot, L., Andersson, S. G., Battin, T. J., Prosser, J. I., Schimel, J. P., Whitman, W. B., & Hallin, S. (2010). The Ecological Coherence of High Bacterial Taxonomic Ranks. Nature Reviews Microbiology, 8, 523-529.
https://doi.org/10.1038/nrmicro2367
[52]  Poll, C., Marhan, S., Ingwersen, J., & Kandeler, E. (2008). Dynamics of Litter Carbon Turnover and Microbial Abundance in a Rye Detritusphere. Soil Biology and Biochemistry, 40, 1306-1321.
https://doi.org/10.1016/j.soilbio.2007.04.002
[53]  Ramesh, T., Bolan, N. S., Kirkham, M. B., Wijesekara, H., Kanchikerimath, M., Rao, C. S., Sandeep, S., Rinklebe, J., Ok, Y. S., & Choudhury, B. U. (2019). Soil Organic Carbon Dynamics: Impact of Land Use Changes and Management Practices: A Review. Advances in Agronomy, 156, 1-107.
https://doi.org/10.1016/bs.agron.2019.02.001
[54]  Rogovska, N., Laird, D. A., Rathke, S. J., & Karlen, D. L. (2014). Biochar Impact on Midwestern Mollisols and Maize Nutrient Availability. Geoderma, 230, 340-347.
https://doi.org/10.1016/j.geoderma.2014.04.009
[55]  Rousk, J., Brookes, P. C., & Bååth, E. (2009). Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Applied and Environmental Microbiology, 75, 1589-1596.
https://doi.org/10.1128/AEM.02775-08
[56]  Sanz, M., De Vente, J., Chotte, J.-L., Bernoux, M., Kust, G., Ruiz, I., Almagro, M., Alloza, J., Vallejo, R., & Castillo, V. (2017). Sustainable Land Management Contribution to Successful Land-Based Climate Change Adaptation and Mitigation: A Report of the Science-Policy Interface. United Nations Convention to Combat Desertification (UNCCD).
[57]  Sattler, D., Murray, L. T., Kirchner, A., & Lindner, A. (2014). Influence of Soil and Topography on Aboveground Biomass Accumulation and Carbon Stocks of Afforested Pastures in South East Brazil. Ecological Engineering, 73, 126-131.
https://doi.org/10.1016/j.ecoleng.2014.09.003
[58]  Schimel, J. P., & Schaeffer, S. M. (2012). Microbial Control over Carbon Cycling in Soil. Frontiers in Microbiology, 3, Article No. 348.
https://doi.org/10.3389/fmicb.2012.00348
[59]  Schjønning, P., Elmholt, S., & Christensen, B. T. (2004). Managing Soil Quality: Challenges in Modern Agriculture. CABI.
https://doi.org/10.1079/9780851996714.0000
[60]  Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Kögel-Knabner, I., Lehmann, J., & Manning, D. A. (2011). Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478, 49-56.
https://doi.org/10.1038/nature10386
[61]  Serrano, O., Ricart, A. M., Lavery, P. S., Mateo, M. A., Arias-Ortiz, A., Masque, P., Rozaimi, M., Steven, A., & Duarte, C. M. (2016). Key Biogeochemical Factors Affecting Soil Carbon Storage in Posidonia Meadows. Biogeosciences, 13, 4581-4594.
https://doi.org/10.5194/bg-13-4581-2016
[62]  Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and Climate Change: Terrestrial Feedbacks and Mitigation Options. Nature Reviews Microbiology, 8, 779-790.
https://doi.org/10.1038/nrmicro2439
[63]  Sinsabaugh, R. L., Turner, B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., & Shah, J. J. F. (2016). Stoichiometry of Microbial Carbon Use Efficiency in Soils. Ecological Monographs, 86, 172-189.
https://doi.org/10.1890/15-2110.1
[64]  Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant and Soil, 241, 155-176.
https://doi.org/10.1023/A:1016125726789
[65]  Six, J., Elliott, E. T., & Paustian, K. (2000). Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil Biology and Biochemistry, 32, 2099-2103.
https://doi.org/10.1016/S0038-0717(00)00179-6
[66]  Smith, S. E., & Read, D. J. (2010). Mycorrhizal Symbiosis. Academic Press.
[67]  Sokol, N. W., Slessarev, E., Marschmann, G. L., Nicolas, A., Blazewicz, S. J., Brodie, E. L., Firestone, M. K., Foley, M. M., Hestrin, R., & Hungate, B. A. (2022). Life and Death in the Soil Microbiome: How Ecological Processes Influence Biogeochemistry. Nature Reviews Microbiology, 20, 415-430.
https://doi.org/10.1038/s41579-022-00695-z
[68]  Spaccini, R., Piccolo, A., Conte, P., Haberhauer, G., & Gerzabek, M. (2002). Increased Soil Organic Carbon Sequestration through Hydrophobic Protection by Humic Substances. Soil Biology and Biochemistry, 34, 1839-1851.
https://doi.org/10.1016/S0038-0717(02)00197-9
[69]  Spohn, M., Klaus, K., Wanek, W., & Richter, A. (2016). Microbial Carbon Use Efficiency and Biomass Turnover Times Depending on Soil Depth-Implications for Carbon Cycling. Soil Biology and Biochemistry, 96, 74-81.
https://doi.org/10.1016/j.soilbio.2016.01.016
[70]  Thotakuri, G., Chakraborty, P., Singh, J., Xu, S., Kovács, P., Iqbal, J., & Kumar, S. (2024). X-Ray Computed Tomography—Measured Pore Characteristics and Hydro-Physical Properties of Soil Profile as Influenced by Long-Term Tillage and Rotation Systems. Catena, 237, Article ID: 107801.
https://doi.org/10.1016/j.catena.2023.107801
[71]  Van Der Heijden, M. G., Bardgett, R. D., & Van Straalen, N. M. (2008). The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecology Letters, 11, 296-310.
https://doi.org/10.1111/j.1461-0248.2007.01139.x
[72]  Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The Importance of the Microbiome of the Plant Holobiont. New Phytologist, 206, 1196-1206.
https://doi.org/10.1111/nph.13312
[73]  Varvel, G., & Wilhelm, W. (2010). Long-Term Soil Organic Carbon as Affected by Tillage and Cropping Systems. Soil Science Society of America Journal, 74, 915-921.
https://doi.org/10.2136/sssaj2009.0362
[74]  Wallenstein, M. D., & Burns, R. G. (2011). Ecology of Extracellular Enzyme Activities and Organic Matter Degradation in Soil: A Complex Community-Driven Process. Methods of Soil Enzymology, 9, 35-55.
https://doi.org/10.2136/sssabookser9.c2
[75]  Weng, Z., Van Zwieten, L., Singh, B. P., Tavakkoli, E., Joseph, S., Macdonald, L. M., Rose, T. J., Rose, M. T., Kimber, S. W., & Morris, S. (2017). Biochar Built Soil Carbon over a Decade by Stabilizing Rhizodeposits. Nature Climate Change, 7, 371-376.
https://doi.org/10.1038/nclimate3276
[76]  Wieder, W. R., Bonan, G. B., & Allison, S. D. (2013). Global Soil Carbon Projections Are Improved by Modelling Microbial Processes. Nature Climate Change, 3, 909-912.
https://doi.org/10.1038/nclimate1951
[77]  Wu, M., Chen, L., Ma, J., Zhang, Y., Li, X., & Pang, D. (2023). Aggregate-Associated Carbon Contributes to Soil Organic Carbon Accumulation along the Elevation Gradient of Helan Mountains. Soil Biology and Biochemistry, 178, Article ID: 108926.
https://doi.org/10.1016/j.soilbio.2022.108926
[78]  Xu, J., Liu, S., Song, S., Guo, H., Tang, J., Yong, J. W., Ma, Y., & Chen, X. (2018). Arbuscular Mycorrhizal Fungi Influence Decomposition and the Associated Soil Microbial Community under Different Soil Phosphorus Availability. Soil Biology and Biochemistry, 120, 181-190.
https://doi.org/10.1016/j.soilbio.2018.02.010
[79]  Yu, H., Ding, W., Chen, Z., Zhang, H., Luo, J., & Bolan, N. (2015). Accumulation of Organic C components in Soil and Aggregates. Scientific Reports, 5, Article No. 13804.
https://doi.org/10.1038/srep13804
[80]  Zhang, B., Chen, S., He, X., Liu, W., Zhao, Q., Zhao, L., & Tian, C. (2014). Responses of Soil Microbial Communities to Experimental Warming in Alpine Grasslands on the Qinghai-Tibet Plateau. PLOS ONE, 9, e103859.
https://doi.org/10.1371/journal.pone.0103859
[81]  Zhang, K., Maltais-Landry, G., & Liao, H.-L. (2021). How Soil Biota Regulate C Cycling and Soil C Pools in Diversified Crop Rotations. Soil Biology and Biochemistry, 156, Article ID: 108219.
https://doi.org/10.1016/j.soilbio.2021.108219
[82]  Zhou, Z., Wang, C., Zheng, M., Jiang, L., & Luo, Y. (2017). Patterns and Mechanisms of Responses by Soil Microbial Communities to Nitrogen Addition. Soil Biology and Biochemistry, 115, 433-441.
https://doi.org/10.1016/j.soilbio.2017.09.015

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413