全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线纹海马的性别特异分子标记的开发及鉴定
Development and Identification of Sex-Specific Molecular Markers in Hippocampus erectus

DOI: 10.12677/ojfr.2024.112006, PP. 49-55

Keywords: 线纹海马,分子标记,SNP,性别决定,2b-RAD
Hippocampus erectus
, Molecular Marker, SNP, Sex-Determination, 2b-RAD

Full-Text   Cite this paper   Add to My Lib

Abstract:

性别特异分子标记的筛选是分子辅助单性育种的重要技术手段。本研究基于雌雄各20尾线纹海马的2b-RAD测序数据,比较分析并筛选出一个雄性特异的tag scaffold63和一个性别二态的SNP位点QSNP63,并在大规模群体中进行了验证。PCR扩增显示在108尾海马中scaffold63 tag仅在雄海马中检测到,而在雌海马中未检测出目的片段;108只海马中QSNP63位点测序显示所有雌性个体中该位点为G/G纯合,所有雄性个体中该位点呈现G/T杂合状态。基因注释发现tag scaffold63位于cilia- and flagella-associated protein 69-like25号外显子后的内含子上,QSNP63位于leucine-rich repeats and IQ motif containing 1基因8号外显子上。综上,本研究筛选到的线纹海马性别特异分子标记及候选基因为进一步解析线纹海马的性别决定机制奠定了基础。
Screening of sex-specific molecular markers is an important technique for breeding of mono-sex population. Based on the 2b-RAD sequencing data of 20 males and 20 females of Hippocampus erectus, we screened and verified a male-specific tag scaffold63 and a sex-dimorphic SNP site QSNP63 in a large-scale population. In 108 Hippocampus erectus, scaffold63 tag was only detected in males but not in females via PCR amplification. Sequencing of QSNP63 site showed nsSNPs with homozygous (G/G) in females and heterozygous (G/T) in males. Gene annotation revealed that scaffold63 tag located on the intron behind Exon 25 of cilia- and flagella-associated protein 69-like, QSNP63 located on Exon 8 of the leucine-rich repeats and IQ motif containing 1. In conclusion, the sex-specific molecular markers and candidate genes screened in this study offer novel insights into the sex- determination mechanisms of the Hippocampus erectus.

References

[1]  黄佳欣. 线纹海马对关键饵料及环境因子的分子响应特征研究[D]: [硕士学位论文]. 天津: 天津农学院, 2020.
[2]  韩松霖. 中国海马的分类、资源、利用与保护[D]: [硕士学位论文]. 桂林: 广西师范大学, 2013.
[3]  秦耿. 美国线纹海马(Hippocampus erectus)性腺发育及个体生长研究[D]: [硕士学位论文]. 北京: 中科院研究生院, 2012.
[4]  Lin, T., Zhang, D., Liu, X. and Xiao, D. (2016) Parental Care Improves Immunity in the Seahorse (Hippocampus erectus). Fish & Shellfish Immunology, 58, 554-562.
https://doi.org/10.1016/j.fsi.2016.09.065
[5]  Devlin, R.H. and Nagahama, Y. (2002) Sex Determination and Sex Differentiation in Fish: An Overview of Genetic, Physiological, and Environmental Influences. Aquaculture, 208, 191-364.
https://doi.org/10.1016/s0044-8486(02)00057-1
[6]  Yamamoto, T. (1953) Artificially Induced Sex-Reversal in Genotypic Males of the Medaka (Oryzias latipes). Journal of Experimental Zoology, 123, 571-594.
https://doi.org/10.1002/jez.1401230309
[7]  Yamamoto, T.O. (1958) Artificial Induction of Functional Sex-Reversal in Genotypic Females of the Medaka (Oryziaslatipes). Journal of Experimental Zoology, 137, 227-263.
[8]  Dan, C., Mei, J., Wang, D. and Gui, J. (2013) Genetic Differentiation and Efficient Sex-Specific Marker Development of a Pair of Y-and X-Linked Markers in Yellow Catfish. International Journal of Biological Sciences, 9, 1043-1049.
https://doi.org/10.7150/ijbs.7203
[9]  Liu, H., Guan, B., Xu, J., Hou, C., Tian, H. and Chen, H. (2012) Genetic Manipulation of Sex Ratio for the Large-Scale Breeding of YY Super-Male and XY All-Male Yellow Catfish (Pelteobagrus fulvidraco (Richardson)). Marine Biotechnology, 15, 321-328.
https://doi.org/10.1007/s10126-012-9487-7
[10]  Han, C., Zhu, Q., Lu, H., Wang, C., Zhou, X., Peng, C., et al. (2020) Screening and Characterization of Sex-Specific Markers Developed by a Simple NGS Method in Mandarin Fish (Siniperca chuatsi). Aquaculture, 527, Article ID: 735495.
https://doi.org/10.1016/j.aquaculture.2020.735495
[11]  Zhao, J., Ou, M., Wang, Y., Liu, H., Luo, Q., Zhu, X., et al. (2021) Breeding of YY Super-Male of Blotched Snakehead (Channa maculata) and Production of All-Male Hybrid (Channa argus ♀ × C. maculata ♂). Aquaculture, 538, Article ID: 736450.
https://doi.org/10.1016/j.aquaculture.2021.736450
[12]  陈美玲, 符宏高, 吴锐琼, 等. 线纹海马早期性腺发育的组织学形态分析[J]. 福建师范大学学报: 自然科学版, 2022, 38(6): 69-73.
[13]  Wang, S., Meyer, E., McKay, J.K. and Matz, M.V. (2012) 2b-RAD: A Simple and Flexible Method for Genome-Wide Genotyping. Nature Methods, 9, 808-810.
https://doi.org/10.1038/nmeth.2023
[14]  Cui, Z., Zhang, J., Sun, Z., Liu, B., Zhao, C. and Chang, Y. (2021) Identification of Sex-Specific Markers through 2b-RAD Sequencing in the Sea Urchin (Mesocentrotus nudus). Frontiers in Genetics, 12, Article ID: 717538.
https://doi.org/10.3389/fgene.2021.717538
[15]  Han, Y., Sun, Z., Chang, S., Wen, B., Song, J., Zuo, R., et al. (2021) Application of SNP in Genetic Sex Identification and Effect of Estradiol on Gene Expression of Sex-Related Genes in Strongylocentrotus intermedius. Frontiers in Endocrinology, 12, Article ID: 756530.
https://doi.org/10.3389/fendo.2021.756530
[16]  Xue, L., Guo, X., Zhou, Y., Wang, Z., Fan, H., Li, D., et al. (2020) Screening and Characterization of Sex-Specific Markers by 2b-RAD Sequencing in Zig-Zag Eel (Mastacembelus armatus) with Implication of XY Sex Determination System. Aquaculture, 528, Article ID: 735550.
https://doi.org/10.1016/j.aquaculture.2020.735550
[17]  Shi, X., Waiho, K., Li, X., Ikhwanuddin, M., Miao, G., Lin, F., et al. (2018) Female-Specific SNP Markers Provide Insights into a WZ/ZZ Sex Determination System for Mud Crabs Scylla Paramamosain, S. tranquebarica and S. serrata with a Rapid Method for Genetic Sex Identification. BMC Genomics, 19, Article No. 981.
https://doi.org/10.1186/s12864-018-5380-8
[18]  Zhu, C., Liu, H., Cheng, L., Pan, Z., Chang, G., Wu, N., et al. (2021) Identification of Sex-Specific Sequences through 2b-RAD Sequencing in Pseudobagrus ussuriensis. Aquaculture, 539, Article ID: 736639.
https://doi.org/10.1016/j.aquaculture.2021.736639
[19]  Zhou, Y., Wu, J., Wang, Z., Li, G., Mei, J., Zhou, L., et al. (2019) Identification of Sex-Specific Markers and Heterogametic XX/XY Sex Determination System by 2b-RAD Sequencing in Redtail Catfish (MYSTUS wyckioides). Aquaculture Research, 50, 2251-2266.
https://doi.org/10.1111/are.14106
[20]  Mei, J. and Gui, J. (2015) Genetic Basis and Biotechnological Manipulation of Sexual Dimorphism and Sex Determination in Fish. Science China Life Sciences, 58, 124-136.
https://doi.org/10.1007/s11427-014-4797-9
[21]  Gong, G., Xiong, Y., Xiao, S., Li, X., Huang, P., Liao, Q., et al. (2022) Origin and Chromatin Remodeling of Young X/Y Sex Chromosomes in Catfish with Sexual Plasticity. National Science Review, 10, nwac239.
https://doi.org/10.1093/nsr/nwac239
[22]  Qu, R., Zhang, Z., Wu, L., Li, Q., Mu, J., Zhao, L., et al. (2023) ADGB Variants Cause Asthenozoospermia and Male Infertility. Human Genetics, 142, 735-748.
https://doi.org/10.1007/s00439-023-02546-0
[23]  Sato, Y., Tajima, A., Kiguchi, M., Kogusuri, S., Fujii, A., Sato, T., et al. (2020) Genome-Wide Association Study of Semen Volume, Sperm Concentration, Testis Size, and Plasma Inhibin B Levels. Journal of Human Genetics, 65, 683-691.
https://doi.org/10.1038/s10038-020-0757-3
[24]  Fukutomi, M., Uedono, C., Fujii, A. and Sato, Y. (2022) Lrriq1 Is an Essential Factor for Fertility by Suppressing Apoptosis. Journal of Assisted Reproduction and Genetics, 39, 2647-2657.
[25]  Xing, K., Chen, Y., Wang, L., Lv, X., Li, Z., Qi, X., et al. (2022) Epididymal Mrna and Mirna Transcriptome Analyses Reveal Important Genes and miRNAs Related to Sperm Motility in Roosters. Poultry Science, 101, Article ID: 101558.
https://doi.org/10.1016/j.psj.2021.101558
[26]  Yang, Y., Jia, C., Ma, J., Cui, P., Tu, D., Wang, S., et al. (2024) Identification of Male-Specific Markers by 2b-RAD Sequencing Reveals an XX/XY Sex-Determination System in Cultured Lined Seahorse, Hippocampus Erectus. Aquaculture, 578, Article ID: 740084.
https://doi.org/10.1016/j.aquaculture.2023.740084

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413