全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Biochar Type and Bradyrhizobium japonicum Seed Inoculation on Soybean Growth, Nodulation and Yield in a Tropical Ferric Acrisol

DOI: 10.4236/as.2024.156036, PP. 635-675

Keywords: Biochar, Poultry Manure, Soil Fertility, Soil Microorganism, Soybean Production

Full-Text   Cite this paper   Add to My Lib

Abstract:

In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance relative to enriched biochar. Moreover, the impact of inoculating soybean seeds with atmospheric nitrogen-fixing bacterium Bradyrhizobium japonicum on nodulation and grain yield has produced inconclusive findings in the literature. This research therefore aims to assess the effect of poultry manure (PM), poultry manure biochar (PMB) and RHB alone and in combinations on grain yield, dry shoot and root biomass of soybeans in the semi-deciduous agro-ecological zone. In addition, the effect of B. japonicum inoculated and non-inoculated soybean seeds on nodulation and grain yield was also investigated. The treatments followed a split plot design studying inoculation and non-inoculation, soil amendments (eight), and control subplot factors, respectively. The results show that the amendment of a ferric acrisol with 4 Mg?ha1 PM, 10 Mg?ha1 RHB + 2 Mg?ha1 PM, and 5 Mg?ha1 RHB + 4 Mg?ha1 PMB with B. japonicum inoculated seed produced significantly greater grain yield (p = 0.05). PM treatment had a significant (p < 0.05) effect on dry shoot, root, and total shoot biomass weight compared to PMB and RHB. B. japonicum-inoculated soybean seeds significantly (p = 0.014) increased soybean nodulation. This study suggests that RHB combined with PM or PMB provides a beneficial source of N, P, and K, resulting in improved soybean yield and nodulation in a tropical ferric acrisol.

References

[1]  Mosier, S., Córdova, S.C. and Robertson, G.P. (2021) Restoring Soil Fertility on Degraded Lands to Meet Food, Fuel, and Climate Security Needs via Perennialization. Frontiers in Sustainable Food Systems, 5, Article ID: 706142.
https://doi.org/10.3389/fsufs.2021.706142
[2]  Wang, L., O’Connor, D., Rinklebe, J., Ok, Y.S., Tsang, D.C.W., Shen, Z., et al. (2020) Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, and Implications for Field Applications. Environmental Science & Technology, 54, 14797-14814.
https://doi.org/10.1021/acs.est.0c04033
[3]  Weterings, R., Bastein, T., Tukker, A., Rademaker, M. and De Ridder, M. (2013) Resources for Our Future: Key Issues and Best Practices in Resource Efficiency. The Hague Centre for Strategic Studies.
[4]  Bathaei, A. and Štreimikienė, D. (2023) Renewable Energy and Sustainable Agriculture: Review of Indicators. Sustainability, 15, Article No. 14307.
https://doi.org/10.3390/su151914307
[5]  Mensah, A.K. and Frimpong, K.A. (2018) Biochar and/or Compost Applications Improve Soil Properties, Growth, and Yield of Maize Grown in Acidic Rainforest and Coastal Savannah Soils in Ghana. International Journal of Agronomy, 2018, Article ID: 6837404.
https://doi.org/10.1155/2018/6837404
[6]  Carneiro, J.S.d.S., Ribeiro, I.C.A., Nardis, B.O., Barbosa, C.F., Lustosa Filho, J.F. and Melo, L.C.A. (2021) Long-Term Effect of Biochar-Based Fertilizers Application in Tropical Soil: Agronomic Efficiency and Phosphorus Availability. Science of the Total Environment, 760, Article ID: 143955.
https://doi.org/10.1016/j.scitotenv.2020.143955
[7]  Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. (2002) Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671-677.
https://doi.org/10.1038/nature01014
[8]  Krause, A. and Rotter, V. (2018) Recycling Improves Soil Fertility Management in Smallholdings in Tanzania. Agriculture, 8, Article No. 31.
https://doi.org/10.3390/agriculture8030031
[9]  Kabir, E., Kim, K. and Kwon, E.E. (2023) Biochar as a Tool for the Improvement of Soil and Environment. Frontiers in Environmental Science, 11, Article ID: 1324533.
https://doi.org/10.3389/fenvs.2023.1324533
[10]  Sajjakulnukit, B., Yingyuad, R., Maneekhao, V., Pongnarintasut, V., Bhattacharya, S.C. and Abdul Salam, P. (2005) Assessment of Sustainable Energy Potential of Non-Plantation Biomass Resources in Thailand. Biomass and Bioenergy, 29, 214-224.
https://doi.org/10.1016/j.biombioe.2005.03.009
[11]  Rafiq, M.K., Bachmann, R.T., Rafiq, M.T., Shang, Z., Joseph, S. and Long, R. (2016) Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLOS ONE, 11, e0156894.
https://doi.org/10.1371/journal.pone.0156894
[12]  Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A. and Singh, S. (2014) Characteristics of Biochars from Crop Residues: Potential for Carbon Sequestration and Soil Amendment. Journal of Environmental Management, 146, 189-197.
https://doi.org/10.1016/j.jenvman.2014.08.003
[13]  Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., et al. (2018) Effects of Biochar on Availability and Plant Uptake of Heavy Metals—A Meta-Analysis. Journal of Environmental Management, 222, 76-85.
https://doi.org/10.1016/j.jenvman.2018.05.004
[14]  Gao, Y., Shao, G., Lu, J., Zhang, K., Wu, S. and Wang, Z. (2020) Effects of Biochar Application on Crop Water Use Efficiency Depend on Experimental Conditions: A Meta-Analysis. Field Crops Research, 249, Article ID: 107763.
https://doi.org/10.1016/j.fcr.2020.107763
[15]  Jeffery, S., Abalos, D., Prodana, M., Bastos, A.C., van Groenigen, J.W., Hungate, B.A., et al. (2017) Biochar Boosts Tropical but Not Temperate Crop Yields. Environmental Research Letters, 12, Article ID: 053001.
https://doi.org/10.1088/1748-9326/aa67bd
[16]  Liu, Q., Liu, B., Zhang, Y., Hu, T., Lin, Z., Liu, G., et al. (2019) Biochar Application as a Tool to Decrease Soil Nitrogen Losses (NH3 Volatilization, N2O Emissions, and N Leaching) from Croplands: Options and Mitigation Strength in a Global Perspective. Global Change Biology, 25, 2077-2093.
https://doi.org/10.1111/gcb.14613
[17]  Liu, Z., Demisie, W. and Zhang, M. (2013) Simulated Degradation of Biochar and Its Potential Environmental Implications. Environmental Pollution, 179, 146-152.
https://doi.org/10.1016/j.envpol.2013.04.030
[18]  Singh, H., Northup, B.K., Rice, C.W. and Prasad, P.V.V. (2022) Biochar Applications Influence Soil Physical and Chemical Properties, Microbial Diversity, and Crop Productivity: A Meta-Analysis. Biochar, 4, Article No. 8.
https://doi.org/10.1007/s42773-022-00138-1
[19]  Jones, D.L., Rousk, J., Edwards-Jones, G., DeLuca, T.H. and Murphy, D.V. (2012) Biochar-Mediated Changes in Soil Quality and Plant Growth in a Three Year Field Trial. Soil Biology and Biochemistry, 45, 113-124.
https://doi.org/10.1016/j.soilbio.2011.10.012
[20]  Kochanek, J., Soo, R.M., Martinez, C., Dakuidreketi, A. and Mudge, A.M. (2022) Biochar for Intensification of Plant-Related Industries to Meet Productivity, Sustainability and Economic Goals: A Review. Resources, Conservation and Recycling, 179, 106109.
https://doi.org/10.1016/j.resconrec.2021.106109
[21]  Li, S. and Tasnady, D. (2023) Biochar for Soil Carbon Sequestration: Current Knowledge, Mechanisms, and Future Perspectives. C, 9, Article No. 67.
https://doi.org/10.3390/c9030067
[22]  Gwenzi, W., Chaukura, N., Mukome, F.N.D., Machado, S. and Nyamasoka, B. (2015) Biochar Production and Applications in Sub-Saharan Africa: Opportunities, Constraints, Risks and Uncertainties. Journal of Environmental Management, 150, 250-261.
https://doi.org/10.1016/j.jenvman.2014.11.027
[23]  Mekuria, W., Noble, A., Sengtaheuanghoung, O., Hoanh, C.T., Bossio, D., Sipaseuth, N., et al. (2014) Organic and Clay-Based Soil Amendments Increase Maize Yield, Total Nutrient Uptake, and Soil Properties in Lao PDR. Agroecology and Sustainable Food Systems, 38, 936-961.
https://doi.org/10.1080/21683565.2014.917144
[24]  Bo, X., Zhang, Z., Wang, J., Guo, S., Li, Z., Lin, H. and Zou, J. (2023) Benefits and Limitations of Biochar for Climate-Smart Agriculture: A Review and Case Study from China. Biochar, 5, 77.
https://link.springer.com/article/10.1007/s42773-023-00279-x
[25]  Laird, D.A., Fleming, P., Davis, D.D., Horton, R., Wang, B. and Karlen, D.L. (2010) Impact of Biochar Amendments on the Quality of a Typical Midwestern Agricultural Soil. Geoderma, 158, 443-449.
https://doi.org/10.1016/j.geoderma.2010.05.013
[26]  Sohi, S.P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A Review of Biochar and Its Use and Function in Soil. Advances in Agronomy, 105, 47-82.
https://www.sciencedirect.com/science/article/abs/pii/S0065211310050029
[27]  Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., et al. (2009) Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility. Plant and Soil, 327, 235-246.
https://doi.org/10.1007/s11104-009-0050-x
[28]  Manickam, T., Cornelissen, G., Bachmann, R., Ibrahim, I., Mulder, J. and Hale, S. (2015) Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons. Sustainability, 7, 16756-16770.
https://doi.org/10.3390/su71215842
[29]  Persaud, T., Homenauth, O., Fredericks, D. and Hamer, S. (2018). Effect of Rice Husk Bio-Char as an Amendment on a Marginal Soil in Guyana. World Environment, 8, 20-25.
http://article.sapub.org/10.5923.j.env.20180801.03.html
[30]  Kapur, T., Kandpal, T.C. and Garg, H.P. (1998). Electricity Generation from Rice Husk in Indian Rice Mills: Potential and Financial Viability. Biomass and Bioenergy, 14, 573-583.
[31]  Manickam, T., Bachmann, R.T., Illani, Z.I., Zulkefli, M., Husni, M.H.A. and Samsuri, A.W. (2012). Characterization of Local Mill Rice Husk Charcoal and Its Effect on Compost Properties. Malaysian Journal of Soil Science, 16, 89-102.
https://www.msss.com.my/mjss/Full%20Text/Vol%2016/Theeba.pdf
[32]  Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S. and Haszeldine, S. (2012) Sustainable Gasification-Biochar Systems? A Case-Study of Rice-Husk Gasification in Cambodia, Part II: Field Trial Results, Carbon Abatement, Economic Assessment and Conclusions. Energy Policy, 41, 618-623.
https://doi.org/10.1016/j.enpol.2011.11.023
[33]  Li, F., Cao, X., Zhao, L., Wang, J. and Ding, Z. (2014) Effects of Mineral Additives on Biochar Formation: Carbon Retention, Stability, and Properties. Environmental Science & Technology, 48, 11211-11217.
https://doi.org/10.1021/es501885n
[34]  Masulili, A., Utomo, W.H. and MS, S. (2010) Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1. The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid Sulfate Soils and Rice Growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2, 39.
https://doi.org/10.5539/jas.v2n1p39
[35]  Lal, R. (2004) Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304, 1623-1627.
https://doi.org/10.1126/science.1097396
[36]  Spokas, K.A. (2012) Impact of Biochar Field Aging on Laboratory Greenhouse Gas Production Potentials. GCB Bioenergy, 5, 165-176.
https://doi.org/10.1111/gcbb.12005
[37]  Tammeorg, P., Simojoki, A., Mäkelä, P., Stoddard, F.L., Alakukku, L. and Helenius, J. (2013) Biochar Application to a Fertile Sandy Clay Loam in Boreal Conditions: Effects on Soil Properties and Yield Formation of Wheat, Turnip Rape and Faba Bean. Plant and Soil, 374, 89-107.
https://doi.org/10.1007/s11104-013-1851-5
[38]  Novak, J.M., Cantrell, K.B., Watts, D.W., Busscher, W.J. and Johnson, M.G. (2013) Designing Relevant Biochars as Soil Amendments Using Lignocellulosic-Based and Manure-Based Feedstocks. Journal of Soils and Sediments, 14, 330-343.
https://doi.org/10.1007/s11368-013-0680-8
[39]  Atkinson, C.J. (2018) How Good Is the Evidence That Soil-Applied Biochar Improves Water-Holding Capacity? Soil Use and Management, 34, 177-186.
https://doi.org/10.1111/sum.12413
[40]  Waziri, M.I. and Kaltungo, B.Y. (2017) Poultry Litter Selection, Management and Utilization in the Tropics. InTech.
https://www.intechopen.com/chapters/52239
[41]  Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P. and Basamba, T.A. (2019) How Safe Is Chicken Litter for Land Application as an Organic Fertilizer? A Review. International Journal of Environmental Research and Public Health, 16, Article No. 3521.
https://doi.org/10.3390/ijerph16193521
[42]  Granatstein, D., Kruger, C., Collins H.P., Garcia-Perez, M. and Yoder, J. (2009) Use of Bio-Char from the Pyrolysis of Waste Organic Material as a Soil Amendment. Center for Sustaining Agriculture Natural Resources, Washington State University.
http://www.ecy.wa.gov/pubs/0907062.pdf
[43]  Dietterich, L.H., Bouskill, N.J., Brown, M., Castro, B., Chacon, S.S., Colburn, L., et al. (2022) Effects of Experimental and Seasonal Drying on Soil Microbial Biomass and Nutrient Cycling in Four Lowland Tropical Forests. Biogeochemistry, 161, 227-250.
https://doi.org/10.1007/s10533-022-00980-2
[44]  Fagbenro, J.A. and Onawumi, O.A. (2013) The Relevance of Biochar Technology to Sustain Soil Productivity and Crop Production in Organic Farming Systems. Nigerian Journal Soil Science, 23, 27-31.
https://journalservers.com/files/117404ae_1125.pdf
[45]  Steiner, C., Das, K.C., Melear, N. and Lakly, D. (2010) Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. Journal of Environmental Quality, 39, 1236-1242.
https://doi.org/10.2134/jeq2009.0337
[46]  Ning, C., Liu, R., Kuang, X., Chen, H., Tian, J. and Cai, K. (2022) Nitrogen Fertilizer Reduction Combined with Biochar Application Maintain the Yield and Nitrogen Supply of Rice but Improve the Nitrogen Use Efficiency. Agronomy, 12, Article No. 3039.
https://doi.org/10.3390/agronomy12123039
[47]  Sikder, S. and Joardar, J.C. (2018) Biochar Production from Poultry Litter as Management Approach and Effects on Plant Growth. International Journal of Recycling of Organic Waste in Agriculture, 8, 47-58.
https://doi.org/10.1007/s40093-018-0227-5
[48]  Pituello, C., Francioso, O., Simonetti, G., Pisi, A., Torreggiani, A., Berti, A., et al. (2014) Characterization of Chemical-Physical, Structural and Morphological Properties of Biochars from Biowastes Produced at Different Temperatures. Journal of Soils and Sediments, 15, 792-804.
https://doi.org/10.1007/s11368-014-0964-7
[49]  Inal, A., Gunes, A., Sahin, O., Taskin, M.B. and Kaya, E.C. (2015) Impacts of Biochar and Processed Poultry Manure, Applied to a Calcareous Soil, on the Growth of Bean and Maize. Soil Use and Management, 31, 106-113.
https://doi.org/10.1111/sum.12162
[50]  Draper, K. and Tomlinson, T. (2012) Poultry Litter Biochar—A US Perspective. International Biochar Initiative.
https://www.wakefieldbiochar.com/wp-content/uploads/2019/07/Poultry_litter_a_US_Perspective.pdf
[51]  Scholz, S.B., Sembres, T., Roberts, K., Whitman, T., Wilson, K. and Lehmann, J. (2014) Biochar Systems for Smallholders in Developing Countries: Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture. The World Bank.
https://doi.org/10.1596/978-0-8213-9525-7
[52]  Sugiyama, A., Ueda, Y., Takase, H. and Yazaki, K. (2015) Do Soybeans Select Specific Species of Bradyrhizobium during Growth? Communicative & Integrative Biology, 8, e992734.
https://doi.org/10.4161/19420889.2014.992734
[53]  Masuda, T. and Goldsmith, P.D. (2009) World Soybean Production: Area Harvested, Yield, and Long-Term Projections. International Food and Agribusiness Management Review, 12, 1-20.
https://ageconsearch.umn.edu/record/92573
[54]  Balboa, G.R., Sadras, V.O. and Ciampitti, I.A. (2018) Shifts in Soybean Yield, Nutrient Uptake, and Nutrient Stoichiometry: A Historical Synthesis-Analysis. Crop Science, 58, 43-54.
https://doi.org/10.2135/cropsci2017.06.0349
[55]  FAO (2019) Crops and Livestock Products.
http://www.fao.org/faostat/en/#data/TP
[56]  Khojely, D.M., Ibrahim, S.E., Sapey, E. and Han, T. (2018) History, Current Status, and Prospects of Soybean Production and Research in Sub-Saharan Africa. The Crop Journal, 6, 226-235.
https://doi.org/10.1016/j.cj.2018.03.006
[57]  Woomer, P.L., Baijukya, F. and Turner, A. (2012) Progress towards Achieving the Vision of Success of N2Africa.
https://n2africa.org/sites/default/files/N2Africa_Progress%20towards%20achieving%20the%20vision%20of%20success%20in%20N2Africa_0.pdf
[58]  Southworth, J., Pfeifer, R.A., Habeck, M., Randolph, J.C., Doering, O.C., Johnston, J.J., et al. (2002) Changes in Soybean Yields in the Midwestern United States as a Result of Future Changes in Climate, Climate Variability, and CO2 Fertilization. Climatic Change, 53, 447-475.
https://doi.org/10.1023/a:1015266425630
[59]  Gitonga, N.M., Njeru, E.M., Cheruiyot, R. and Maingi, J.M. (2021) Bradyrhizobium Inoculation Has a Greater Effect on Soybean Growth, Production and Yield Quality in Organic than Conventional Farming Systems. Cogent Food & Agriculture, 7, Article ID: 1935529.
https://doi.org/10.1080/23311932.2021.1935529
[60]  Pitumpe Arachchige, P.S., Rosso, L.H.M., Hansel, F.D., Ramundo, B., Torres, A.R., Asebedo, R., et al. (2020) Temporal Biological Nitrogen Fixation Pattern in Soybean Inoculated with Bradyrhizobium. Agrosystems, Geosciences & Environment, 3, e20079.
https://doi.org/10.1002/agg2.20079
[61]  Gyogluu, C., Boahen, S.K. and Dakora, F.D. (2016) Response of Promiscuous-Nodulating Soybean (Glycine max L. Merr.) Genotypes to Bradyrhizobium Inoculation at Three Field Sites in Mozambique. Symbiosis, 69, 81-88.
https://doi.org/10.1007/s13199-015-0376-5
[62]  Ronner, E., Franke, A.C., Vanlauwe, B., Dianda, M., Edeh, E., Ukem, B., et al. (2016) Understanding Variability in Soybean Yield and Response to P-Fertilizer and Rhizobium Inoculants on Farmers’ Fields in Northern Nigeria. Field Crops Research, 186, 133-145.
https://doi.org/10.1016/j.fcr.2015.10.023
[63]  Keyser, H.H. and Li, F. (1992) Potential for Increasing Biological Nitrogen Fixation in Soybean. Plant and Soil, 141, 119-135.
https://doi.org/10.1007/bf00011313
[64]  Akhtar, N., Arshad, I., Shakir, M.A., Qureshi, J., Sehrish, M. and Ali, L. (2013) Co-Inoculation with Rhizobium and Bacillus sp to Improve the Phosphorus Availability and Yield of Wheat (Triticum aestivum L.). Journal of Animal and Plant Sciences, 23, 190-197.
[65]  Yagoub, S.O., Kamel, A.S., Hassan, M.M. and Hassan, M.A. (2015) Effects of Organic and Mineral Fertilizers on Growth and Yield of Soybean (Glycine max L. Merril). International Journal of Agronomy and Agricultural Research, 7, 45-52.
https://www.academia.edu/14955480/Effects_of_organic_and_mineral_fertilizers_on_growth_and_yield_of_soybean_Glycine_max_L_Merril_?auto=download
[66]  Santos, M.S., Nogueira, M.A. and Hungria, M. (2019) Microbial Inoculants: Reviewing the Past, Discussing the Present and Previewing an Outstanding Future for the Use of Beneficial Bacteria in Agriculture. AMB Express, 9, Article No. 205.
https://doi.org/10.1186/s13568-019-0932-0
[67]  Ohyama, T., Tewari, K., Ishikawa, S., Tanaka, K., Kamiyama, S., Ono, Y. and Takahashi, Y. (2017) Role of Nitrogen on Growth and Seed Yield of Soybean and a New Fertilization Technique to Promote Nitrogen Fixation and Seed Yield. In: SoybeanThe Basis of Yield, Biomass and Productivity, InTech, 153-185.
https://researchdirect.westernsydney.edu.au/islandora/object/uws:40770/datastream/PDF/view
[68]  Hanson, K.G. and Gan, Y.T. (2002, February) Development of a Rating Scheme to Evaluate Root Nodulation in Chickpea (Cicer arietinum). Soils and Crops Workshop.
https://harvest.usask.ca/server/api/core/bitstreams/e170aadd-2370-48c1-9fde-173d93d19c8d/content
[69]  Biederbeck, V.O., Campbell, C.A. and Zentner, R.P. (1995) Effect of Legume Green Manuring on Microbial Populations and Activity in a Brown Loam. Soils and Crops Workshop.
https://harvest.usask.ca/handle/10388/10408
[70]  Mathenge, C., Thuita, M., Masso, C., Gweyi-Onyango, J. and Vanlauwe, B. (2019) Variability of Soybean Response to Rhizobia Inoculant, Vermicompost, and a Legume-Specific Fertilizer Blend in Siaya County of Kenya. Soil and Tillage Research, 194, Article ID: 104290.
https://doi.org/10.1016/j.still.2019.06.007
[71]  Yao, D., Hu, Q., Wang, D., Yang, H., Wu, C., Wang, X., et al. (2016) Hydrogen Production from Biomass Gasification Using Biochar as a Catalyst/Support. Bioresource Technology, 216, 159-164.
https://doi.org/10.1016/j.biortech.2016.05.011
[72]  Farrar, M.B., Wallace, H.M., Xu, C., Nguyen, T.T.N., Tavakkoli, E., Joseph, S., et al. (2018) Short-Term Effects of Organo-Mineral Enriched Biochar Fertiliser on Ginger Yield and Nutrient Cycling. Journal of Soils and Sediments, 19, 668-682.
https://doi.org/10.1007/s11368-018-2061-9
[73]  Peng, J., Han, X., Li, N., Chen, K., Yang, J., Zhan, X., et al. (2021) Combined Application of Biochar with Fertilizer Promotes Nitrogen Uptake in Maize by Increasing Nitrogen Retention in Soil. Biochar, 3, 367-379.
https://doi.org/10.1007/s42773-021-00090-6
[74]  Zhang, S., Cui, J., Wu, H., Zheng, Q., Song, D., Wang, X., et al. (2021) Organic Carbon, Total Nitrogen, and Microbial Community Distributions within Aggregates of Calcareous Soil Treated with Biochar. Agriculture, Ecosystems & Environment, 314, Article ID: 107408.
https://doi.org/10.1016/j.agee.2021.107408
[75]  Frimpong, K.A., Amoakwah, E., Osei, B.A. and Arthur, E. (2016) Changes in Soil Chemical Properties and Lettuce Yield Response Following Incorporation of Biochar and Cow Dung to Highly Weathered Acidic Soils. Journal of Organic Agriculture and Environment, 4, 28-39.
https://www.scirp.org/reference/referencespapers?referenceid=3430663
[76]  Carneiro, J.S.d.S., Ribeiro, I.C.A., Nardis, B.O., Barbosa, C.F., Lustosa Filho, J.F. and Melo, L.C.A. (2021) Long-Term Effect of Biochar-Based Fertilizers Application in Tropical Soil: Agronomic Efficiency and Phosphorus Availability. Science of the Total Environment, 760, Article ID: 143955.
https://doi.org/10.1016/j.scitotenv.2020.143955
[77]  Nardis, B.O., Santana Da Silva Carneiro, J., Souza, I.M.G.D., Barros, R.G.D. and Azevedo Melo, L.C. (2020) Phosphorus Recovery Using Magnesium-Enriched Biochar and Its Potential Use as Fertilizer. Archives of Agronomy and Soil Science, 67, 1017-1033.
https://doi.org/10.1080/03650340.2020.1771699
[78]  Sudjana, B., Jingga, A. and Simarmata, T. (2017) Enriched Rice Husk Biochar Ameliorant to Increase Crop Productivity on Typic Hapludults. Global Advanced Research Journal of Agricultural Science, 6, 108-113.
https://www.semanticscholar.org/paper/Enriched-Rice-Husk-Biochar-Ameliorant-to-Increase-Sudjana-Jingga/688d04c91950357c275e2ee0cbd827446e3f7f78
[79]  Warnock, D.D., Lehmann, J., Kuyper, T.W. and Rillig, M.C. (2007) Mycorrhizal Responses to Biochar in Soil—Concepts and Mechanisms. Plant and Soil, 300, 9-20.
https://doi.org/10.1007/s11104-007-9391-5
[80]  Lashari, M.S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., et al. (2013) Effects of Amendment of Biochar-Manure Compost in Conjunction with Pyroligneous Solution on Soil Quality and Wheat Yield of a Salt-Stressed Cropland from Central China Great Plain. Field Crops Research, 144, 113-118.
https://doi.org/10.1016/j.fcr.2012.11.015
[81]  Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A. and Joseph, S. (2008) Using Poultry Litter Biochars as Soil Amendments. Soil Research, 46, 437-444.
https://doi.org/10.1071/sr08036
[82]  Leggett, M., Diaz-Zorita, M., Koivunen, M., Bowman, R., Pesek, R., Stevenson, C., et al. (2017) Soybean Response to Inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agronomy Journal, 109, 1031-1038.
https://doi.org/10.2134/agronj2016.04.0214
[83]  Food and Agriculture Organization (1998) Ethiopia Soil Fertility Initiative Concept Paper. Report No. 98/028CP-ETH, F.A.O., 34.
[84]  Adu, S.V. (1992). Soils of the Kumasi Region, Ashanti Region, Ghana. Soil Research Institute, 73-98.
[85]  Sys, C., Van Ranst, E., Debaveye, J. and Beenaert, F. (1993) Land Evaluation Part III. Crop Requirements. Agriculture Publication No. 7, G.A.D.C., 191 p.
[86]  Anand, S.C., Koenning, S.R. and Sharma, S.B. (1995) Effect of Temporal Deployment of Different Sources of Resistance to Soybean Cyst Nematode. Journal of Production Agriculture, 8, 119-123.
https://doi.org/10.2134/jpa1995.0119
[87]  Bakari, R., Mungai, N., Thuita, M. and Masso, C. (2020) Impact of Soil Acidity and Liming on Soybean (Glycine max) Nodulation and Nitrogen Fixation in Kenyan Soils. Acta Agriculturae Scandinavica, Section BSoil & Plant Science, 70, 667-678.
https://doi.org/10.1080/09064710.2020.1833976
[88]  Keino, L., Baijukya, F., Ng’etich, W., Otinga, A.N., Okalebo, J.R., Njoroge, R., et al. (2015) Nutrients Limiting Soybean (Glycine max L) Growth in Acrisols and Ferralsols of Western Kenya. PLOS ONE, 10, e0145202.
https://doi.org/10.1371/journal.pone.0145202
[89]  Cafaro La Menza, N., Monzon, J.P., Specht, J.E. and Grassini, P. (2017) Is Soybean Yield Limited by Nitrogen Supply? Field Crops Research, 213, 204-212.
https://doi.org/10.1016/j.fcr.2017.08.009
[90]  Esu, I.E. (1991) Detailed Soil Survey of NIHORT Farm at Bunkure Kano State, Nigeria. Institute for Agricultural Research Samaru.
[91]  Rota, J.A., Wandahwa, P. and Sigunga, D.O. (2005) Land Evaluation for Soybean (Glycine max L. Merrill) Production Based on Kriging Soil and Climate Parameters for the Kakamega District, Kenya. Journal of Agronomy, 5, 142-150.
https://doi.org/10.3923/ja.2006.142.150
[92]  Paethanom, A. and Yoshikawa, K. (2012) Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its Tar Adsorption Capability. Energies, 5, 4941-4951.
https://doi.org/10.3390/en5124941
[93]  Song, W. and Guo, M. (2012) Quality Variations of Poultry Litter Biochar Generated at Different Pyrolysis Temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
https://doi.org/10.1016/j.jaap.2011.11.018
[94]  Aung, T.T., Tittabutr, P., Boonkerd, N., Herridge, D. and Teaumroong, N. (2013) Co-Inoculation Effects of Bradyrhizobium japonicum and Azospirillum sp. on Competitive Nodulation and Rhizosphere Eubacterial Community Structures of Soybean under Rhizobia-Established Soil Conditions. African Journal of Biotechnology, 12, 2850-2862.
https://file:///C:/Users/g-elebiyo/Downloads/ajol-file-journals_82_articles_131269_submission_proof_131269-973-354348-1-10-20160301%20(3).pdf
[95]  Ulzen, J., Abaidoo, R.C., Mensah, N.E., Masso, C. and AbdelGadir, A.H. (2016) Bradyrhizobium Inoculants Enhance Grain Yields of Soybean and Cowpea in Northern Ghana. Frontiers in Plant Science, 7, Article No. 1770.
https://doi.org/10.3389/fpls.2016.01770
[96]  Anderson, J.M. and Ingram, J.S.I. (1993) A Handbook of Methods. CAB International, 62-65.
https://www.scirp.org/(S(351jmbntv-nsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2164411
[97]  Yuan, J., Xu, R. and Zhang, H. (2011) The Forms of Alkalis in the Biochar Produced from Crop Residues at Different Temperatures. Bioresource Technology, 102, 3488-3497.
https://doi.org/10.1016/j.biortech.2010.11.018
[98]  ASTM, D. (1762) 84 Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM International, 1-2.
[99]  McLean, E.O. (1982) Soil pH and Lime Requirement. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, 199-224.
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1181150
[100]  Nelson, D.W. and Sommers, L.E. (1996) Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 961-1010.
[101]  Landon, J.R. (1991) Booker Tropical Soil Manual. A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Sub Tropics. Longman Scientific & Technical Publ.
https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1234510
[102]  Bray, R.H. and Kurtz, L.T. (1945) Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Science, 59, 39-46.
https://doi.org/10.1097/00010694-194501000-00006
[103]  Bremner, J.M. and Mulvaney, C.S. (1982) Nitrogen-Total. In: Page, A.L., Miller, R.H. and Keeney, D.R. Eds., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, 595-624.
[104]  Black, C.A. (1986) Methods of Soil Analysis, Part I. Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. Part II. Chemical and Microbiological Properties. Agronomy Series, ASA.
[105]  Brown, J.G. and Lilleland, O.M.U.N.D. (1946) Rapid Determination of Potassium and Sodium in Plant Materials and Soil Extracts by Flame Photometry. Proceeding of the American Society of Horticultural Sciences, 48, 341-346.
[106]  Moss, P. (1961) Limits of Interference by Iron, Manganese, Aluminium and Phosphate in the EDTA Determination of Calcium in the Presence of Magnesium Using Cal-Red as Indicator. Journal of the Science of Food and Agriculture, 12, 30-34.
https://doi.org/10.1002/jsfa.2740120105
[107]  Page, A.L., Miller, R.H. and Keeney, D.R. (1982) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Vol. 1159, American Society of Agronomy, Soil Science Society of America.
[108]  Bouyoucos, G.J. (1962) Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal, 54, 464-465.
https://doi.org/10.2134/agronj1962.00021962005400050028x
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1117225
[109]  Chao, H., Raboanatahiry, N., Wang, X., Zhao, W., Chen, L., Guo, L., et al. (2019) Genetic Dissection of Harvest Index and Related Traits through Genome-Wide Quantitative Trait Locus Mapping in Brassica napus L. Breeding Science, 69, 104-116.
https://doi.org/10.1270/jsbbs.18115
[110]  Kemanian, A.R., Stöckle, C.O., Huggins, D.R. and Viega, L.M. (2007) A Simple Method to Estimate Harvest Index in Grain Crops. Field Crops Research, 103, 208-216.
https://doi.org/10.1016/j.fcr.2007.06.007
[111]  Sujatha, S. and Mohan Prabhu, S. (2020) A Study on the Importance of Pre-Hoc and Post-Hoc ANOVA Tests in Agriculture Research. International Journal of Scientific and Technology Research, 9, 6142-6144.
http://www.ijstr.org/final-print/feb2020/A-Study-On-The-Importance-Of-Pre-hoc-And-Post-Hoc-Anova-Tests-In-Agriculture-Research.pdf
[112]  Xiang, Y., Deng, Q., Duan, H. and Guo, Y. (2017) Effects of Biochar Application on Root Traits: A Meta-Analysis. GCB Bioenergy, 9, 1563-1572.
https://doi.org/10.1111/gcbb.12449
[113]  Mus, F., Crook, M.B., Garcia, K., Garcia Costas, A., Geddes, B.A., Kouri, E.D., et al. (2016) Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Applied and Environmental Microbiology, 82, 3698-3710.
https://doi.org/10.1128/aem.01055-16
[114]  Weisany, W., Raei, Y. and Allahverdipoor, K.H. (2013). Role of Some of Mineral Nutrients in Biological Nitrogen Fixation. Bulletin of Environment, Pharmacology and Life Sciences, 2, 77-84.
https://bepls.com/march2013/14.pdf
[115]  Liang, F., Li, G., Lin, Q. and Zhao, X. (2014) Crop Yield and Soil Properties in the First 3 Years after Biochar Application to a Calcareous Soil. Journal of Integrative Agriculture, 13, 525-532.
https://doi.org/10.1016/s2095-3119(13)60708-x
[116]  Oram, N.J., van de Voorde, T.F.J., Ouwehand, G., Bezemer, T.M., Mommer, L., Jeffery, S., et al. (2014) Soil Amendment with Biochar Increases the Competitive Ability of Legumes via Increased Potassium Availability. Agriculture, Ecosystems & Environment, 191, 92-98.
https://doi.org/10.1016/j.agee.2014.03.031
[117]  Sodah, M., Jayeoba, O., Amana, S. and Jibrin, I. (2022) Growth and Yield of Soybean (Glycine max L. Merrill) as Influenced by Biochar Application. Pat, 18, 50-58.
http://www.patnsukjournal.net/Vol18No2/P7.pdf
[118]  Yooyen, J., Wijitkosum, S. and Sriburi, T. (2015) Increasing Yield of Soybean by Adding Biochar. Journal of Environmental Research and Development, 9, 1066-1074.
[119]  Lehmann, J., Pereira da Silva Jr., J., Steiner, C., Nehls, T., Zech, W. and Glaser, B. (2003) Nutrient Availability and Leaching in an Archaeological Antrosol and Ferralsol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments. Plant and Soil, 249, 343-357.
https://doi.org/10.1023/a:1022833116184
[120]  Lu, C. and Tian, H. (2017) Global Nitrogen and Phosphorus Fertilizer Use for Agriculture Production in the Past Half Century: Shifted Hot Spots and Nutrient Imbalance. Earth System Science Data, 9, 181-192.
https://doi.org/10.5194/essd-9-181-2017
[121]  Testa, L., Morese, M.M., Miller, C., Traverso, L., Pirelli, T., Fracassi, P., et al. (2023) Bioenergy and Nutrition: Positive Linkages for the Achievement of the UN Sustainable Development Goals. WIREs Energy and Environment, 12, e489.
https://doi.org/10.1002/wene.489
[122]  Maguire, R.O. and Heckendorn, S.E. (2011) Laboratory Procedures. Virginia Tech Soil Testing Laboratory, Virginia Cooperative Extension.
[123]  Faki, O.C., Gustave, D.D., Emile, C.A., Brice, T.O., Bérékia, K.A., Mireille, D., et al. (2021) Fertilizer Recommendations for Optimal Soybean Production in North and Center Benin. Journal of Soil Science and Environmental Management, 12, 29-43.
https://doi.org/10.5897/jssem2021.0860
[124]  Mete, F.Z., Mia, S., Dijkstra, F.A., Abuyusuf, M. and Hossain, A.S.M.I. (2015) Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in an Alkaline Soil. Pedosphere, 25, 713-719.
https://doi.org/10.1016/s1002-0160(15)30052-7
[125]  Zhu, Q., Kong, L., Shan, Y., Yao, X., Zhang, H., Xie, F., et al. (2019) Effect of Biochar on Grain Yield and Leaf Photosynthetic Physiology of Soybean Cultivars with Different Phosphorus Efficiencies. Journal of Integrative Agriculture, 18, 2242-2254.
https://doi.org/10.1016/s2095-3119(19)62563-3
[126]  Daba, S. and Haile, M. (2000) Effects of Rhizobial Inoculant and Nitrogen Fertilizer on Yield and Nodulation of Common Bean. Journal of Plant Nutrition, 23, 581-591.
https://doi.org/10.1080/01904160009382042
[127]  Haefele, S.M., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A.A., Pfeiffer, E.M., et al. (2011) Effects and Fate of Biochar from Rice Residues in Rice-Based Systems. Field Crops Research, 121, 430-440.
https://doi.org/10.1016/j.fcr.2011.01.014
[128]  Hu, W., Zhang, Y., Xiangmin, R., Fei, J., Peng, J. and Luo, G. (2023) Coupling Amendment of Biochar and Organic Fertilizers Increases Maize Yield and Phosphorus Uptake by Regulating Soil Phosphatase Activity and Phosphorus-Acquiring Microbiota. Agriculture, Ecosystems & Environment, 355, Article ID: 108582.
https://doi.org/10.1016/j.agee.2023.108582
[129]  Arif, M., Ilyas, M., Riaz, M., Ali, K., Shah, K., Ul Haq, I., et al. (2017) Biochar Improves Phosphorus Use Efficiency of Organic-Inorganic Fertilizers, Maize-Wheat Productivity and Soil Quality in a Low Fertility Alkaline Soil. Field Crops Research, 214, 25-37.
https://doi.org/10.1016/j.fcr.2017.08.018
[130]  Ofori, P. (2017) Yield Response of Soybean and Cowpea to Rock Phosphate Fertilizer Blend and Rhizobial Inoculation on Two Benchmark Soils of Northern Ghana. Doctoral Dissertation, Kwame Nkrumah University of Science and Technology.
https://ir.knust.edu.gh/server/api/core/bitstreams/27c60899-6501-4096-9d13-aa0f5598d129/content
[131]  Głodowska, M., Schwinghamer, T., Husk, B. and Smith, D. (2017) Biochar Based Inoculants Improve Soybean Growth and Nodulation. Agricultural Sciences, 8, 1048-1064.
https://doi.org/10.4236/as.2017.89076
[132]  Yusif, S., Muhammad, I., Hayatu, N., Sauwa, M., Tafinta, I., Mohammed, M., et al. (2016) Effects of Biochar and Rhizobium Inoculation on Nodulation and Growth of Groundnut in Sokoto State, Nigeria. Journal of Applied Life Sciences International, 9, 1-9.
https://doi.org/10.9734/jalsi/2016/27297
[133]  Abaidoo, R.C., Keyser, H.H., Singleton, P.W., Dashiell, K.E. and Sanginga, N. (2007) Population Size, Distribution, and Symbiotic Characteristics of Indigenous Bradyrhizobium spp. That Nodulate TGx Soybean Genotypes in Africa. Applied Soil Ecology, 35, 57-67.
https://doi.org/10.1016/j.apsoil.2006.05.006
[134]  Bationo, B.A., Tabo, R., Waswa, B.S., Okeyo, J., Kihara, J.M., Fosu, M. and Kabore, S. (2008) Synthesis of Soil Water and Nutrient Management Research in the Volta Basin.
https://cgspace.cgiar.org/server/api/core/bitstreams/51bccdca-4d1e-46b0-98e0-da46ee805c5c/content
[135]  Ndungu, S.M. (2017) Characterization and Screening of Indigenous Rhizobia as Potential Inoculants to Enhance Cowpea (Vigna unguiculata L. Walp.) Production in Kenya. Doctoral Dissertation, ETH.
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/195931/1/DISS.ETHNO.24496_SamuelMathuNdungu_Oct2017.pdf
[136]  Ferreira, A.S., Balbinot Junior, A.A., Werner, F., Zucareli, C., Franchini, J.C. and Debiasi, H. (2016) Plant Density and Mineral Nitrogen Fertilization Influencing Yield, Yield Components and Concentration of Oil and Protein in Soybean Grains. Bragantia, 75, 362-370.
https://doi.org/10.1590/1678-4499.479
[137]  Appunu, C. and Dhar, B. (2006) Symbiotic Effectiveness of Acid-Tolerant Bradyrhizobium Strains with Soybean in Low pH Soil. African Journal of Biotechnology, 5, 842-845.
https://www.ajol.info/index.php/ajb/article/view/42880
[138]  Tiwari, R.P., Reeve, W.G. and Gleenn, A.R. (1992) Mutations Conferring Acid Sensitivity in the Acid-Tolerant Strains Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM710. FEMS Microbiology Letters, 100, 107-112.
https://doi.org/10.1111/j.1574-6968.1992.tb14027.x
[139]  Jarecki, W. (2023) Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum. Plants, 12, Article No. 2431.
https://doi.org/10.3390/plants12132431
[140]  Kadiata, B.D., Schubert, S. and Yan, F. (2012) Assessment of Different Inoculants of Bradyrhizobium japonicum on Nodulation, Potential N2 Fixation and Yield Performance of Soybean (Glycine max L.). Journal of Animal and Plant Sciences, 13, 1704-1713.
https://www.m.elewa.org/JAPS/2012/13.1/3.pdf
[141]  Moretti, L.G., Lazarini, E., Bossolani, J.W., Parente, T.L., Caioni, S., Araujo, R.S., et al. (2018) Can Additional Inoculations Increase Soybean Nodulation and Grain Yield? Agronomy Journal, 110, 715-721.
https://doi.org/10.2134/agronj2017.09.0540
[142]  Habete, A. and Buraka, T. (2016) Effect of Rhizobium Inoculation and Nitrogen Fertilization on Nodulation and Yield Response of Common Bean (Phaseolus vulgaries L.) at Boloso Sore, Southern Ethiopia. Journal of Biology, Agriculture and Healthcare, 6, 72-75.
https://www.academia.edu/113590160/Effect_of_Rhizobium_Inoculation_and_Nitrogen_Fertilization_on_Nodulation_and_Yield_Response_of_Common_Bean_Phaseolus_vulgaries_L_at_Boloso_Sore_Southern_Ethiopia?uc-sb-sw=104872946
[143]  Tagoe, S.O., Horiuchi, T. and Matsui, T. (2008) Effects of Carbonized and Dried Chicken Manures on the Growth, Yield, and N Content of Soybean. Plant and Soil, 306, 211-220.
https://doi.org/10.1007/s11104-008-9573-9
[144]  Ribet, J. and Drevon, J. (1995) Increase in Permeability to Oxygen and in Oxygen Uptake of Soybean Nodules under Limiting Phosphorus Nutrition. Physiologia Plantarum, 94, 298-304.
https://doi.org/10.1111/j.1399-3054.1995.tb05315.x

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413