全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multi-Compartment SCFA Quantification in Human

DOI: 10.4236/ajac.2024.156012, PP. 177-200

Keywords: LC-MS, 3-Nitrophenylhydrazine, Short-Chain Fatty Acids, Human Biological Samples, Quantification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Short-chain fatty acids (SCFA) play an important role in human biochemistry. They originate primarily from the digestive system through carbohydrates microbial fermentation. Most SCFA produced in the colon are absorbed by the intestinal wall and enter the bloodstream to be distributed throughout the body for multiple purposes. At the intestinal level, SCFA play a role in controlling fat storage and fatty acid metabolism. The effects of these beneficial compounds therefore concern overall health. They facilitate energy expenditure and are valuable allies in the fight against obesity and diabetes. SCFA are also involved in the regulation of the levels of several neurotransmitters such as GABA (γ-aminobutyric acid), glutamate, serotonin, dopamine, and norepinephrine. Their role is also highlighted in many inflammatory and neurodegenerative diseases such as Alzheimer’s disease (AD) or Parkinson’s disease (PD). To have a realistic picture of the distribution of SCFA in different biological compartments of the human body, we propose to study SCFA simultaneously in five human biological samples: feces, saliva, serum, cerebrospinal fluid (CSF), and urine, as well as in Dried Blood Spot (DBS). To evaluate their concentration and repeatability, we used 10 aliquots from pooled samples, analyzed by 3-nitrophenylhydrazine (3-NPH) derivation and liquid chromatography coupled with high sensitivity mass spectrometry (LC-QqQ-MS). We also evaluated the SCFA assay on Dried Blood Spot (DBS). In this work, we adapted the pre-analytical parts for each sample to be able to use a common calibration curve, thus facilitating multi-assay quantification studies and so being less time-consuming. Moreover, we proposed new daughter ions from the same neutral loss (43 Da) to quantify SCFAs, thus improving the sensitivity. In conclusion, our methodology, based on a unique calibration curve for all samples for each SCFA, is well-suited to quantified them in a clinical context.

References

[1]  Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200.
https://doi.org/10.1080/19490976.2015.1134082
[2]  Silva, Y.P., Bernardi, A. and Frozza, R.L. (2020) The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11, Article 25.
https://doi.org/10.3389/fendo.2020.00025
[3]  Primec, M., Mičetić-Turk, D. and Langerholc, T. (2017) Analysis of Short-Chain Fatty Acids in Human Feces: A Scoping Review. Analytical Biochemistry, 526, 9-21.
https://doi.org/10.1016/j.ab.2017.03.007
[4]  Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455.
https://doi.org/10.3920/bm2020.0057
[5]  Armstrong, C.W., McGregor, N.R., Lewis, D.P., Butt, H.L. and Gooley, P.R. (2016) The Association of Fecal Microbiota and Fecal, Blood Serum and Urine Metabolites in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Metabolomics, 13, Article No. 8.
https://doi.org/10.1007/s11306-016-1145-z
[6]  den Besten, G., van Eunen, K., Groen, A.K., Venema, K., Reijngoud, D. and Bakker, B.M. (2013) The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. Journal of Lipid Research, 54, 2325-2340.
https://doi.org/10.1194/jlr.r036012
[7]  You, H., Tan, Y., Yu, D., Qiu, S., Bai, Y., He, J., et al. (2022) The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Frontiers in Nutrition, 9, Article 886902.
https://doi.org/10.3389/fnut.2022.886902
[8]  Wang, G., Yu, Y., Wang, Y., Wang, J., Guan, R., Sun, Y., et al. (2019) Role of SCFAS in Gut Microbiome and Glycolysis for Colorectal Cancer Therapy. Journal of Cellular Physiology, 234, 17023-17049.
https://doi.org/10.1002/jcp.28436
[9]  Shuwen, H., Miao, D., Quan, Q., Wei, W., Zhongshan, Z., Chun, Z., et al. (2019) Protective Effect of the “Food-Microorganism-SCFAS” Axis on Colorectal Cancer: From Basic Research to Practical Application. Journal of Cancer Research and Clinical Oncology, 145, 2169-2197.
https://doi.org/10.1007/s00432-019-02997-x
[10]  Roy, C.C., Kien, C.L., Bouthillier, L. and Levy, E. (2006) Short‐Chain Fatty Acids: Ready for Prime Time? Nutrition in Clinical Practice, 21, 351-366.
https://doi.org/10.1177/0115426506021004351
[11]  Qian, X., Xie, R., Liu, X., Chen, S. and Tang, H. (2022) Mechanisms of Short-Chain Fatty Acids Derived from Gut Microbiota in Alzheimer’s Disease. Aging and Disease, 13, 1252-1266.
https://doi.org/10.14336/ad.2021.1215
[12]  Yilmaz, A., Geddes, T., Han, B., Bahado-Singh, R.O., Wilson, G.D., Imam, K., et al. (2017) Diagnostic Biomarkers of Alzheimer’s Disease as Identified in Saliva Using 1H NMR-Based Metabolomics. Journal of Alzheimers Disease, 58, 355-359.
https://doi.org/10.3233/jad-161226
[13]  Wu, L., Han, Y., Zheng, Z., Peng, G., Liu, P., Yue, S., et al. (2021) Altered Gut Microbial Metabolites in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease: Signals in Host-Microbe Interplay. Nutrients, 13, Article 228.
https://doi.org/10.3390/nu13010228
[14]  Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., et al. (2016) Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell, 167, 1469-1480.e12.
https://doi.org/10.1016/j.cell.2016.11.018
[15]  Mitchell, R.W., On, N.H., Del Bigio, M.R., Miller, D.W. and Hatch, G.M. (2011) Fatty Acid Transport Protein Expression in Human Brain and Potential Role in Fatty Acid Transport across Human Brain Microvessel Endothelial Cells. Journal of Neurochemistry, 117, 735-746.
https://doi.org/10.1111/j.1471-4159.2011.07245.x
[16]  Yu, Y. and Zhao, F. (2021) Microbiota-Gut-Brain Axis in Autism Spectrum Disorder. Journal of Genetics and Genomics, 48, 755-762.
https://doi.org/10.1016/j.jgg.2021.07.001
[17]  Srikantha, P. and Mohajeri, M.H. (2019) The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. International Journal of Molecular Sciences, 20, Article 2115.
https://doi.org/10.3390/ijms20092115
[18]  Carretta, M.D., Quiroga, J., López, R., Hidalgo, M.A. and Burgos, R.A. (2021) Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Frontiers in Physiology, 12, Article 662739.
https://doi.org/10.3389/fphys.2021.662739
[19]  Piotrowska, M., Binienda, A. and Fichna, J. (2021) The Role of Fatty Acids in Crohn’s Disease Pathophysiology—An Overview. Molecular and Cellular Endocrinology, 538, Article 111448.
https://doi.org/10.1016/j.mce.2021.111448
[20]  Chen, X., Chen, X. and Tang, X. (2020) Short-Chain Fatty Acid, Acylation and Cardiovascular Diseases. Clinical Science, 134, 657-676.
https://doi.org/10.1042/cs20200128
[21]  Furuhashi, T., Sugitate, K., Nakai, T., Jikumaru, Y. and Ishihara, G. (2018) Rapid Profiling Method for Mammalian Feces Short Chain Fatty Acids by GC-MS. Analytical Biochemistry, 543, 51-54.
https://doi.org/10.1016/j.ab.2017.12.001
[22]  El‐Maghrabey, M.H., Kishikawa, N. and Kuroda, N. (2020) Current Trends in Isotope‐Coded Derivatization Liquid Chromatographic‐Mass Spectrometric Analyses with Special Emphasis on Their Biomedical Application. Biomedical Chromatography, 34, e4756.
https://doi.org/10.1002/bmc.4756
[23]  Zhang, S., Wang, H. and Zhu, M. (2019) A Sensitive GC/MS Detection Method for Analyzing Microbial Metabolites Short Chain Fatty Acids in Fecal and Serum Samples. Talanta, 196, 249-254.
https://doi.org/10.1016/j.talanta.2018.12.049
[24]  Willacey, C.C.W., Naaktgeboren, M., Lucumi Moreno, E., Wegrzyn, A.B., van der Es, D., Karu, N., et al. (2019) LC-MS/MS Analysis of the Central Energy and Carbon Metabolites in Biological Samples Following Derivatization by Dimethylaminophenacyl Bromide. Journal of Chromatography A, 1608, Article 460413.
https://doi.org/10.1016/j.chroma.2019.460413
[25]  Willacey, C.C.W., Karu, N., Harms, A.C. and Hankemeier, T. (2020) Metabolic Profiling of Material-Limited Cell Samples by Dimethylaminophenacyl Bromide Derivatization with UPLC-MS/MS Analysis. Microchemical Journal, 159, Article 105445.
https://doi.org/10.1016/j.microc.2020.105445
[26]  Hsieh, Y., Chien, K., Chang, C., Hung, C., Li, L., Chiang, W., et al. (2022) Development of a Method for Dansylation of Metabolites Using Organic Solvent-Compatible Buffer Systems for Amine/Phenol Submetabolome Analysis. Analytica Chimica Acta, 1189, Article 339218.
https://doi.org/10.1016/j.aca.2021.339218
[27]  Zhang, Y., Wang, B., Jin, W., Wen, Y., Nan, L., Yang, M., et al. (2019) Sensitive and Robust MALDI-TOF-MS Glycomics Analysis Enabled by Girard’s Reagent T On-Target Derivatization (GTOD) of Reducing Glycans. Analytica Chimica Acta, 1048, 105-114.
https://doi.org/10.1016/j.aca.2018.10.015
[28]  Han, J., Lin, K., Sequeira, C. and Borchers, C.H. (2015) An Isotope-Labeled Chemical Derivatization Method for the Quantitation of Short-Chain Fatty Acids in Human Feces by Liquid Chromatography-Tandem Mass Spectrometry. Analytica Chimica Acta, 854, 86-94.
https://doi.org/10.1016/j.aca.2014.11.015
[29]  Liebisch, G., Ecker, J., Roth, S., Schweizer, S., Öttl, V., Schött, H., et al. (2019) Quantification of Fecal Short Chain Fatty Acids by Liquid Chromatography Tandem Mass Spectrometry—Investigation of Pre-Analytic Stability. Biomolecules, 9, Article 121.
https://doi.org/10.3390/biom9040121
[30]  Rahman, M.N., Diantini, A., Fattah, M., Barliana, M.I. and Wijaya, A. (2021) A Highly Sensitive, Simple, and Fast Gas Chromatography-Mass Spectrometry Method for the Quantification of Serum Short-Chain Fatty Acids and Their Potential Features in Central Obesity. Analytical and Bioanalytical Chemistry, 413, 6837-6844.
https://doi.org/10.1007/s00216-021-03639-3
[31]  Kim, K., Lee, Y., Chae, W. and Cho, J. (2022) An Improved Method to Quantify Short-Chain Fatty Acids in Biological Samples Using Gas Chromatography-Mass Spectrometry. Metabolites, 12, Article 525.
https://doi.org/10.3390/metabo12060525
[32]  Bihan, D.G., Rydzak, T., Wyss, M., Pittman, K., McCoy, K.D. and Lewis, I.A. (2022) Method for Absolute Quantification of Short Chain Fatty Acids via Reverse Phase Chromatography Mass Spectrometry. PLOS ONE, 17, e0267093.
https://doi.org/10.1371/journal.pone.0267093
[33]  Chen, L., Sun, X., Khalsa, A.S., Bailey, M.T., Kelleher, K., Spees, C., et al. (2021) Accurate and Reliable Quantitation of Short Chain Fatty Acids from Human Feces by Ultra High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS). Journal of Pharmaceutical and Biomedical Analysis, 200, Article 114066.
https://doi.org/10.1016/j.jpba.2021.114066
[34]  Valdivia-Garcia, M.A., Chappell, K.E., Camuzeaux, S., Olmo-García, L., van der Sluis, V.H., Radhakrishnan, S.T., et al. (2022) Improved Quantitation of Short-Chain Carboxylic Acids in Human Biofluids Using 3-Nitrophenylhydrazine Derivatization and Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS). Journal of Pharmaceutical and Biomedical Analysis, 221, Article 115060.
https://doi.org/10.1016/j.jpba.2022.115060
[35]  Trifonova, O.P., Maslov, D.L., Balashova, E.E. and Lokhov, P.G. (2019) Evaluation of Dried Blood Spot Sampling for Clinical Metabolomics: Effects of Different Papers and Sample Storage Stability. Metabolites, 9, Article 277.
https://doi.org/10.3390/metabo9110277
[36]  Shafaei, A., Vamathevan, V., Pandohee, J., Lawler, N.G., Broadhurst, D. and Boyce, M.C. (2021) Sensitive and Quantitative Determination of Short-Chain Fatty Acids in Human Serum Using Liquid Chromatography Mass Spectrometry. Analytical and Bioanalytical Chemistry, 413, 6333-6342.
https://doi.org/10.1007/s00216-021-03589-w
[37]  Calvigioni, M., Bertolini, A., Codini, S., Mazzantini, D., Panattoni, A., Massimino, M., et al. (2023) HPLC-MS-MS Quantification of Short-Chain Fatty Acids Actively Secreted by Probiotic Strains. Frontiers in Microbiology, 14, Article 1124144.
https://doi.org/10.3389/fmicb.2023.1124144
[38]  Xiang, L., Ru, Y., Shi, J., Wang, L., Zhao, H., Huang, Y., et al. (2023) Derivatization of N-Acyl Glycines by 3-Nitrophenylhydrazine for Targeted Metabolomics Analysis and Their Application to the Study of Diabetes Progression in Mice. Analytical Chemistry, 95, 2183-2191.
https://doi.org/10.1021/acs.analchem.2c02507
[39]  Wang, H., Wang, C., Guo, L., Zheng, Y., Hu, W., Dong, T.T.X., et al. (2019) Simultaneous Determination of Short‐Chain Fatty Acids in Human Feces by HPLC with Ultraviolet Detection Following Chemical Derivatization and Solid‐Phase Extraction Segmental Elution. Journal of Separation Science, 42, 2500-2509.
https://doi.org/10.1002/jssc.201900249
[40]  Marotz, C., Cavagnero, K.J., Song, S.J., McDonald, D., Wandro, S., Humphrey, G., et al. (2021) Evaluation of the Effect of Storage Methods on Fecal, Saliva, and Skin Microbiome Composition. mSystems, 6, e01329-20.
https://doi.org/10.1128/msystems.01329-20
[41]  Shaukat, A. and Levin, T.R. (2022) Current and Future Colorectal Cancer Screening Strategies. Nature Reviews Gastroenterology & Hepatology, 19, 521-531.
https://doi.org/10.1038/s41575-022-00612-y
[42]  Wishart, D.S., Tzur, D., Knox, C., Eisner, R., Guo, A.C., Young, N., et al. (2007) HMDB: The Human Metabolome Database. Nucleic Acids Research, 35, D521-D526.
https://doi.org/10.1093/nar/gkl923
[43]  Nagatomo, R., Kaneko, H., Kamatsuki, S., Ichimura-Shimizu, M., Ishimaru, N., Tsuneyama, K., et al. (2022) Short-Chain Fatty Acids Profiling in Biological Samples from a Mouse Model of Sjögren’s Syndrome Based on Derivatized LC-MS/MS Assay. Journal of Chromatography B, 1210, Article 123432.
https://doi.org/10.1016/j.jchromb.2022.123432
[44]  Kawase, T., Hatanaka, K., Kono, M., Shirahase, Y., Ochiai, K., Takashiba, S., et al. (2020) Simultaneous Determination of 7 Short-Chain Fatty Acids in Human Saliva by High-Sensitivity Gas Chromatography-Mass Spectrometry. Chromatography, 41, 63-71.
https://doi.org/10.15583/jpchrom.2019.025
[45]  Imai, K., Togami, H. and Okamoto, T. (2010) Involvement of Histone H3 Lysine 9 (H3K9) Methyltransferase G9a in the Maintenance of HIV-1 Latency and Its Reactivation by BIX01294. Journal of Biological Chemistry, 285, 16538-16545.
https://doi.org/10.1074/jbc.m110.103531
[46]  Yu, X., Shahir, A., Sha, J., Feng, Z., Eapen, B., Nithianantham, S., et al. (2014) Short-Chain Fatty Acids from Periodontal Pathogens Suppress Histone Deacetylases, EZH2, and SUV39H1 to Promote Kaposi’s Sarcoma-Associated Herpesvirus Replication. Journal of Virology, 88, 4466-4479.
https://doi.org/10.1128/jvi.03326-13
[47]  Szczeklik, K., Krzysciak, W., Osiewicz, M., Bystrowska, B., Kuszaj, M., Piatek-Guziewicz, A., et al. (2022) Short-Chain Fatty Acids in the Saliva of Patients with Gastroesophageal Reflux Disease. Journal of Physiology and Pharmacology, 73, 521-530.
https://doi.org/10.26402/jpp.2022.4.05
[48]  Ho, H., Chun, Y., Jeong, S., Jumreornvong, O., Sicherer, S.H. and Bunyavanich, S. (2021) Multidimensional Study of the Oral Microbiome, Metabolite, and Immunologic Environment in Peanut Allergy. Journal of Allergy and Clinical Immunology, 148, 627-632.e3.
https://doi.org/10.1016/j.jaci.2021.03.028
[49]  Han, J., Higgins, R., Lim, M.D., Atkinson, K., Yang, J., Lin, K., et al. (2018) Isotope-Labeling Derivatization with 3-Nitrophenylhydrazine for LC/Multiple-Reaction Monitoring-Mass-Spectrometry-Based Quantitation of Carnitines in Dried Blood Spots. Analytica Chimica Acta, 1037, 177-187.
https://doi.org/10.1016/j.aca.2018.01.045
[50]  Dei Cas, M., Paroni, R., Saccardo, A., Casagni, E., Arnoldi, S., Gambaro, V., et al. (2020) A Straightforward LC-MS/MS Analysis to Study Serum Profile of Short and Medium Chain Fatty Acids. Journal of Chromatography B, 1154, Article 121982.
https://doi.org/10.1016/j.jchromb.2020.121982
[51]  Liu, G., Mühlhäusler, B.S. and Gibson, R.A. (2014) A Method for Long Term Stabilisation of Long Chain Polyunsaturated Fatty Acids in Dried Blood Spots and Its Clinical Application. Prostaglandins, Leukotrienes and Essential Fatty Acids, 91, 251-260.
https://doi.org/10.1016/j.plefa.2014.09.009
[52]  Ingels, A.M.E., Lambert, W.E. and Stove, C.P. (2010) Determination of Gamma-Hydroxybutyric Acid in Dried Blood Spots Using a Simple GC-MS Method with Direct “on Spot” Derivatization. Analytical and Bioanalytical Chemistry, 398, 2173-2182.
https://doi.org/10.1007/s00216-010-4183-9
[53]  Barone, R., Alaimo, S., Messina, M., Pulvirenti, A., Bastin, J., Ferro, A., et al. (2018) A Subset of Patients with Autism Spectrum Disorders Show a Distinctive Metabolic Profile by Dried Blood Spot Analyses. Frontiers in Psychiatry, 9, Article 636.
https://doi.org/10.3389/fpsyt.2018.00636
[54]  Cao, Y., Wang, Q., Gao, P., Dong, J., Zhu, Z., Fang, Y., et al. (2016) A Dried Blood Spot Mass Spectrometry Metabolomic Approach for Rapid Breast Cancer Detection. OncoTargets and Therapy, 9, 1389-1398.
https://doi.org/10.2147/ott.s95862
[55]  Zytkovicz, T.H., Fitzgerald, E.F., Marsden, D., Larson, C.A., Shih, V.E., Johnson, D.M., et al. (2001) Tandem Mass Spectrometric Analysis for Amino, Organic, and Fatty Acid Disorders in Newborn Dried Blood Spots. Clinical Chemistry, 47, 1945-1955.
https://doi.org/10.1093/clinchem/47.11.1945
[56]  Wishart, D.S., Lewis, M.J., Morrissey, J.A., Flegel, M.D., Jeroncic, K., Xiong, Y., et al. (2008) The Human Cerebrospinal Fluid Metabolome. Journal of Chromatography B, 871, 164-173.
https://doi.org/10.1016/j.jchromb.2008.05.001
[57]  Hirschberg, S., Gisevius, B., Duscha, A. and Haghikia, A. (2019) Implications of Diet and the Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. International Journal of Molecular Sciences, 20, Article 3109.
https://doi.org/10.3390/ijms20123109
[58]  Majumdar, A., Siva Venkatesh, I.P. and Basu, A. (2023) Short-Chain Fatty Acids in the Microbiota-Gut-Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chemical Neuroscience, 14, 1045-1062.
https://doi.org/10.1021/acschemneuro.2c00803
[59]  Ntranos, A., Park, H., Wentling, M., Tolstikov, V., Amatruda, M., Inbar, B., et al. (2021) Bacterial Neurotoxic Metabolites in Multiple Sclerosis Cerebrospinal Fluid and Plasma. Brain, 145, 569-583.
https://doi.org/10.1093/brain/awab320
[60]  Xie, J., Bruggeman, A., De Nolf, C., Vandendriessche, C., Van Imschoot, G., Van Wonterghem, E., et al. (2023) Gut Microbiota Regulates Blood‐Cerebrospinal Fluid Barrier Function and Aβ Pathology. The EMBO Journal, 42, e111515.
https://doi.org/10.15252/embj.2022111515
[61]  MacFabe, D.F. (2012) Short-Chain Fatty Acid Fermentation Products of the Gut Microbiome: Implications in Autism Spectrum Disorders. Microbial Ecology in Health & Disease, 23, Article 19260.
https://doi.org/10.3402/mehd.v23i0.19260
[62]  Hanstock, T., Clayton, E., Li, K. and Mallet, P. (2004) Anxiety and Aggression Associated with the Fermentation of Carbohydrates in the Hindgut of Rats. Physiology & Behavior, 82, 357-368.
https://doi.org/10.1016/j.physbeh.2004.04.002
[63]  Meissner, S., Hagen, F., Deiner, C., Günzel, D., Greco, G., Shen, Z., et al. (2017) Key Role of Short-Chain Fatty Acids in Epithelial Barrier Failure during Ruminal Acidosis. Journal of Dairy Science, 100, 6662-6675.
https://doi.org/10.3168/jds.2016-12262

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133