全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cretaceous Large Igneous Provinces (LIPs) Affect Sedimentary Processing: Jordan, Arabian Plate; NW Germany, Central Europe

DOI: 10.4236/ojg.2024.146029, PP. 671-704

Keywords: Degassing, Explosive Tuff, Acid Rain, Climate Forcing, Photosynthesis, Mineral Trans/Neoformation, Lithofacies Modified, Synsedimentary Tectonics

Full-Text   Cite this paper   Add to My Lib

Abstract:

Both the NE Gondwana Platform (Jordan) and the Carpathian/NW Europe Seaway towards the N Atlantic expose comparable sequence analytical patterns as i.e. the Maximum Flooding Surface (MSF), relating to the Arabian Shelf, throughout one of the warmest Phanerozoic Epochs. Supervolcanic Large Igneous Provinces (LIPs), (explosive island arc andesitic volcanism), Mid-Oceanic Rift Basalts (MORB), (S/N Atlantic, Arctic) and kimberlitic volcanism (W Gondwana) provided striking conditions for an immense influence (tuff, degassing, T) on the sedimentary processing throughout the Cretaceous, mainly verified by K-montmorillonite , dozens of tuff beds (predominantly in NW Germany), zeolite, cristobalite, extremely high chert occurrences as well as the reconfirming of the global anoxic event around the Cenomanian/Turonian b. (94 Ma) by a positive 13C-maximum (~0.5%). Thus the lithofacies spectrum (carbonate rocks, chalk, chert, porcellanite, shale) was affected by pH, Eh, T, photosynthesis, and greenhouse gases—change during varying positive/negative climate forcing. While acid sturzrain events caused the transformation of arkosic/subarkosic sediments of the hinterlands to quartz arenite cycles deposited on the Jordanian Platform during early Cretaceous, the other patterns mentioned, led to a rapid change of lithofacies through Late Cretaceous. The southward directed Neotethys transgression can be reconstructed during the Early Cretaceous by glauconite-aged tidalites that give hint on transpressional tectonics during the Upper Cenomanian east of the Dead Sea. The Cretaceous/Paleogene (K-Pg) transitional zone evidences a zone of several cumulative events (island arc-volcanism) and the Chicxulub impact, indicated by at least two extinctions phases. The southward obduction of the Palmyrides, Syria and related transtensional/transpressional strike slip tectonics (partially pull-apart structures) left a fast facies change on the Jordanian Platform.

References

[1]  Wilson, M. (1992) Magmatism and Continental Rifting during the Opening of the South Atlantic Ocean: A Consequence of Lower Cretaceous Super-Plume Activity? Geological Society, London, Special Publications, 68, 241-255.
https://doi.org/10.1144/gsl.sp.1992.068.01.15
[2]  Turner, S., Regelous, M., Kelley, S., Hawkesworth, C. and Mantovani, M. (1994) Magmatism and Continental Break-Up in the South Atlantic: High Precision 40Ar-39Ar Geochronology. Earth and Planetary Science Letters, 121, 333-348.
https://doi.org/10.1016/0012-821x(94)90076-0
[3]  Price, N.J. (2001) Major Impacts and Plate Tectonics. Routledge, 354 p.
[4]  Svensen, H.H., Torsvik, T.H., Callegaro, S., Augland, L., Heimdal, T.H., Jerram, D.A., et al. (2017) Gondwana Large Igneous Provinces: Plate Reconstructions, Volcanic Basins and Sill Volumes. Geological Society, London, Special Publications, 463, 17-40.
https://doi.org/10.1144/sp463.7
[5]  Abdelmalak, M.M., Planke, S., Polteau, S., Hartz, E.H., Faleide, J.I., Tegner, C., Jerram, D.A. Millett, J.M. and Myklebustet, R. (2018) Break-Up Volcanism and Plate Tectonics in the NW Atlantic. Tectonophysics, 760, 229-251.
[6]  Dobretsov, N.L., Vernikovsky, V.A., Karyakin, Y.V., Korago, E.A. and Simonov, V.A. (2013) Mesozoic-Cenozoic Volcanism and Geodynamic Events in the Central and Eastern Arctic. Russian Geology and Geophysics, 54, 874-887.
https://doi.org/10.1016/j.rgg.2013.07.008
[7]  Larson, R.L. (1995) Die Superplume-Episode in der Mittleren Kreidezeit. Spektrum der Wissenschaft, No. 7, 48-52.
[8]  Brink, H. (2006) Do the Global Geodynamic Cycles of the Phanerozoic Represent a Feedback System of the Earth and Is the Moon Involved as an Acting External Force? Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 17-40.
https://doi.org/10.1127/1860-1804/2006/0157-0017
[9]  Schmincke, H.U. (2000) Vulkanismus. Darmstadt (Wissenschaftliche Buchgesellschaft), 264 p.
[10]  Haq, B.U. and Al-Qahtani, A.M. (2005) Phanerozoic Cycles of Sea-Level Change on the Arabian Platform. GeoArabia, 10, 127-160.
[11]  Schmidt, H.V. (1974) Erdgeschichte. Sammlung Göschen, de Gruyter, 246 p.
[12]  Schneider, W. and Salameh, E. (2012) Did Major Impacts Affect Sedimentologic/sequence-Analytical Pattern of the Early Palaeozoic Sedimentary Systems of Jordan, Arabian Plate? Open Journal of Geology, 2, 241-252.
https://doi.org/10.4236/ojg.2012.24024
[13]  Schneider, W. and Salameh, E. (2020) Phanerozoic Quartz Arenite Formation and Sequence-Analytical Patterns: Indirectly Relating to Major Impacting and Super Plume Volcanism, Jordan, Arabian Plate. Open Journal of Geology (OJG), 10, 13-52.
[14]  Schneider, W. and Salameh, E. (2022) The Permian-Triassic Transitional Zone: Jordan, Arabian Plate; Linked to Siberian Large Igneous Province and Neo-Tethys Breakup Degassing via Climate Forcing, Atmospheric Hazard and Metal Toxicity. Open Journal of Geology, 12, 472-503.
https://doi.org/10.4236/ojg.2022.126023
[15]  Augland, L.E., Ryabov, V.V., Vernikovsky, V.A., Planke, S., Polozov, A.G., Callegaro, S., et al. (2019) The Main Pulse of the Siberian Traps Expanded in Size and Composition. Scientific Reports, 9, Article No. 18723.
https://doi.org/10.1038/s41598-019-54023-2
[16]  Schneider, W. and Salameh, E. (2023) Effects on Sedimentary Processes via Upper Triassic Climate Forcing Caused by Multiple Impacting and Large Igneous Provinces (LIP)-Rifting/degassing: Jordanian Platform/Arabian Plate and Germanic Basin/Central Europe. Open Journal of Geology, 13, 136-170.
https://doi.org/10.4236/ojg.2023.132007
[17]  Hodych, J.P. and Dunning, G.R. (1992) Did the Manicouagan Impact Trigger End-of-Triassic Mass Extinction? Geology, 20, 51-54.
https://doi.org/10.1130/0091-7613(1992)020<0051:dtmite>2.3.co;2
[18]  Heimdal, T.H., Jones, M.T. and Svensen, H.H. (2020) Thermogenic Carbon Release from the Central Atlantic Magmatic Province Caused Major End-Triassic Carbon Cycle Perturbations. Proceedings of the National Academy of Sciences, 117, 11968-11974.
[19]  Armstrong, H.A., Turner, B.R., Makhlouf, I.M., Weedon, G.P., Williams, M., Al Smadi, A., et al. (2005) Origin, Sequence Stratigraphy and Depositional Environment of an Upper Ordovician (Hirnantian) Deglacial Black Shale, Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 273-289.
https://doi.org/10.1016/j.palaeo.2005.01.007
[20]  Ballo, E.G., Augland, L.E., Hammer, Ø. and Svensen, H.H. (2019) A New Age Model for the Ordovician (Sandbian) K-Bentonites in Oslo, Norway. Palaeogeography, Palaeoclimatology, Palaeoecology, 520, 203-213.
https://doi.org/10.1016/j.palaeo.2019.01.016
[21]  Ormö, J., Sturkell, E., Alwmark, C. and Melosh, J. (2014) First Known Terrestrial Impact of a Binary Asteroid from a Main Belt Breakup Event. Scientific Reports, 4, Article No. 6724.
https://doi.org/10.1038/srep06724
[22]  Husseini, M.I. (1989) Tectonic and Deposition Model of Late Precambrian-Cambrian Arabian and Adjoining Plates. AAPG Bulletin, 73, 1117-1131.
https://doi.org/10.1306/44b4a54b-170a-11d7-8645000102c1865d
[23]  Jarrar, G.H. (1986) Late Proterozoic Crustal Evolution of the Arabian-Nubian-Shield in the Wadi Araba Area, SW-Jordan. Geologisches Jahrbuch Reihe B, Band B. 61, E. Schweizerbart, Stuttgart, 3-87.
[24]  Jarrar, G., Wachendorf, H. and Zellmer, H. (1991) The Saramuj Conglomerate: Evolution of a Pan-African Molasse Sequence from Southwest Jordan. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, 1991, 335-356.
https://doi.org/10.1127/njgpm/1991/1991/335
[25]  Jarrar, G., Wachendorf, H. and Saffarini, G. (1992) A Late Proterozoic Bimodal Volcanic/Subvolcanic Suite from Wadi Araba, Southwest Jordan. Precambrian Research, 56, 51-72.
https://doi.org/10.1016/0301-9268(92)90083-z
[26]  Jarrar, G., Wachendorf, H. and Zachmann, D. (1993) A Pan-African Alkaline Pluton Intruding the Saramuj Conglomerate, South-West Jordan. Geologische Rundschau, 82, 121-135.
https://doi.org/10.1007/bf00563275
[27]  Burgath, K.P., Hagen, D. and Siewers, U. (1984) Geochemistry, Geology, and Primary Copper Mineralization in Wadi Araba, Jordan. Hannover, Geol. Jb., B 53, 3-53.
[28]  Jarrar, G.H. (1991) Petrology and Geochemistry of the Triassic Subvolcanic Suite from Central Jordan, E and NE of the Dead Sea. Mutah Journal for Research and Studies, 6, 183-196.
[29]  Bandel, K. (1981) New Stratigraphical and Structural Evidence for Lateral Dislocation in the Jordan Rift Valley Connected with a Description of the Jurassic Rock Column in Jordan. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 161, 271-308.
https://doi.org/10.1127/njgpa/161/1981/271
[30]  Amireh, B.S. (1993) Three Paleosols of the Nubian Series of Jordan: Climatologic, Tectonic and Paleogeographic Implications. Dirasat, 20B, 33-62.
[31]  Powell, J.H., Humphreys, B. and Moh’d, B.Kh. (1990) Hardground Development at the Base Mujib Chalk Member (Wadi Um Ghudran Formation), Senonian of Central and South Jordan. Proceedings 3rd Jordanian Geological Conference, Amman, 3-5 April 1988, 251-282.
[32]  Abed, A.M. and Kraishan, G.M. (1991) Evidence for Shallow-Marine Origin of a “Monterey-Formation Type” Chert-Phosphorite-Dolomite Seqence: Amman Formation (Late Cretaceous), Central Jordan. Facies, 24, 25-37.
https://doi.org/10.1007/bf02536839
[33]  Abed, A.M. and Amireh, B.S. (1999) Sedimentology, Geochemistry, Economic Potential and Palaeogeography of an Upper Cretaceous Phosphorite Belt in the Southeastern Desert of Jordan. Cretaceous Research, 20, 119-133.
https://doi.org/10.1006/cres.1999.0147
[34]  Mimran, Y. (1972) The Tayasir Volcanics: A Lower Cretaceous formation in the Shomeron, Central Israel. Geological Survey of Israel Bulletin, No. 52, 9 p.
[35]  Garfunkel, Z. and Derin, B. (1988). Reevaluation of Latest Jurassic-Early Cretaceous History of the Negev and the Role of Magmatic Activity. Israel Journal of Earth-Sciences, 37, 43-52.
[36]  Bender, F. (1975) Geology of the Arabian Peninsula, Jordan Professional Paper 560-I.
[37]  ten Brink, U.S., Rybakov, M., Al Zoubi, A.S., Hassouneh, M., Frieslander, U., Batayneh, A.T., et al. (1999) Anatomy of the Dead Sea Transform: Does It Reflect Continuous Changes in Plate Motion? Geology, 27, 887-890.
https://doi.org/10.1130/0091-7613(1999)027<0887:aotdst>2.3.co;2
[38]  Abdallah S. Al-Zoubi, A.S. and Abu-Hamatteh, Z.S.H. (2009) Geological Evolution of the Jordan Valley. Journal of the Virtual Explorer, 32, Paper 10.
[39]  Cohen, Z. (1976) Early Cretaceous Buried Canyon: Influence on Accumulation of Hydrocarbons in Helez Oil Field, Israel. AAPG Bulletin, 60, 108-114.
https://doi.org/10.1306/83d9228f-16c7-11d7-8645000102c1865d
[40]  Amireh, B.S. (1997) Sedimentology and Palaeogeography of the Regressive-Transgressive Kurnub Group (Early Cretaceous) of Jordan. Sedimentary Geology, 112, 69-88.
https://doi.org/10.1016/s0037-0738(97)00024-9
[41]  Jacobshagen, V. (1994) Orogenic Evolution of the Hellenides: New Aspects. In: Active Continental MarginsPresent and Past, Geol. Rundschau 83, Springer, 249-256.
[42]  Schneider, W., Bode, S. and Oppermann, A. (1998) Nappe Advance, Suture-Progradation, Erosion and Flysch-Composition in the Hellenides. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 209, 349-379.
https://doi.org/10.1127/njgpa/209/1998/349
[43]  German Stratigraphic Commission, Menning, M. and Hendrich, A. (2017) Stratigraphic Table of Germany Compact 2017. GFZ German Research Centre for Geosciences.
[44]  Amireh, B.S., Jarrar, G., Henjes-Kunst, F. and Schneider, W. (1998) K-Ar Dating, X-Ray Diffractometry, Optical and Scanning Electron Microscopy of Glauconies from the Early Cretaceous Kurnub Group of Jordan. Geological Journal, 33, 49-65.
https://doi.org/10.1002/(sici)1099-1034(199801/03)33:1<49::aid-gj759>3.0.co;2-y
[45]  Mutterlose, J., Wippich, M.G.E. and Geisen, M. (1997) Cretaceous Depositional Environment of NW Germany. Bochner Geol. and Geotechn. Arbeiten 46, 1-28.
[46]  Svensen, H.H., Jerram, D.A., Polozov, A.G., Planke, S., Neal, C.R., Augland, L.E., et al. (2019) Thinking about Lips: A Brief History of Ideas in Large Igneous Province Research. Tectonophysics, 760, 229-251.
https://doi.org/10.1016/j.tecto.2018.12.008
[47]  Abed, A.M. and Schneider, W. (1982) The Cenomanian Nodular Limestone Member of Jordan—From Subtidal to Supratidal Environments. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, 1982, 513-522.
https://doi.org/10.1127/njgpm/1982/1982/513
[48]  Abed, A.M. (1985) Emergence of Wadi Mujib Area (Central Jordan) during Lower Cenomanian and Its Regional Tectonic Implications. In: Dixon, J.E. and Robertson, A.E.F., Eds., The Geological Evolution of the Eastern Mediterranean, Spec. Pupl. Geol. Soc., Blackwell Science Publishing, 848, p.
[49]  Abed, A.M. and El-Hiyari, M. (1986) Depositional Environments and Paleogeography of the Cretaceous Gypsum Horizon in West-Central Jordan. Sedimentary Geology, 47, 109-123.
https://doi.org/10.1016/0037-0738(86)90074-6
[50]  Powell, J.H., Humphreys, B. and Moh’d, B.K. (1990) Hardground Development at the Base of the Muji Chalk Member (Wadi Um Ghudran F.), Senonian, of Central/Southern Jordan. Proceedings 3rd Jordanian Geological Conference, Amman, 3-5 April 1988, 251-262.
[51]  Khaled, H., Schneider, W. and Zachmann, D. (1990) Sedimentological and Geochemical Patterns of Jordanian Phosphate Deposits. Proceedings 3rd Jordanian Geological Conference, Amman, 3-5 April 1988, 146-175.
[52]  Abed, A.M. and Amireh, B.S. (1983) Petrography and Geochemistry of Some Jordanian Oil Shales from North Jordan. Journal of Petroleum Geology, 5, 261-274.
[53]  Naji, F. (1983) Kalkiges Nanoplankton aus der Oberkreide und dem Alttertiär N Jordaniens (Mittel-Santon bis Mittel Eozän). Geol. Jb. B 55, 3-185.
[54]  Gradstein, E.M. and Ogg, J. (1996) The Phanerozoic Time Scale. Episodes, 19, 3.
[55]  Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W. and Lourens, L.J. (2004) A New Geologic Time Scale, with Special Reference to Precambrian and Neogene. Episodes, 27, 83-100.
https://doi.org/10.18814/epiiugs/2004/v27i2/002
[56]  Peterson, S.V., Dutton, A. and Lohman, K.C. (2016) End-Cretaceous Extinction in Antartica Linked to Both Deccan Volcanism and Meteoritic Impact via Climate Change. Nature Communication, 7, Article ID: 123079.
[57]  Gradstein, F.M., Ogg, J.G. and Hilger, F.J. (2012) The Geological Time Scale. Newsletters on Stratigraphy, 45, 171-188.
[58]  Henehan, M.J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, D.N., et al. (2019) Rapid Ocean Acidification and Protracted Earth System Recovery Followed the End-Cretaceous Chicxulub Impact. Proceedings of the National Academy of Sciences, 116, 22500-22504.
https://doi.org/10.1073/pnas.1905989116
[59]  Niebuhr, B. (2006) Multistratigraphische Gliederung der norddeutschen Schreibkreide (Coniac bis Maastricht), Korrelation von Aufschlussen und Bohrungen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 245-261.
https://doi.org/10.1127/1860-1804/2006/0157-0245
[60]  Schlanger, S.O., Arthur, M.A., Jenkyns, H.C. and Scholle, P.A. (1987) The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and Distribution of Organic Carbon-Rich Beds and the Marine Δ13C Excursion. Geological Society, London, Special Publications, 26, 371-399.
https://doi.org/10.1144/gsl.sp.1987.026.01.24
[61]  Zimmerle, W. (1987) Vestiges of Volcanic Activity in Cretaceous of the Western Tethys. In: Wiedmann, J., Ed., Cretaceous Symp., Schweizer Bart, 951-987.
[62]  Schneider, W. and Salameh, E. (2020) End-Cretaceous Quartz Arenite Formation in an Estuarian Environment under Brine Influence, N. Germany; Linked to both Deccan Volcanism and Chicxulub Impact Degassing during Climate Change. Open Journal of Geology, 10, 1091-1118.
https://doi.org/10.4236/ojg.2020.1011053
[63]  Millot, G. (1970) Geology of Clays: Weathering, Sedimentology, Geochemistry. Springer, 425 p.
[64]  Engelhardt, W.V. (1977) The Origin of Sediments and Sedimentary Rocks. Part III. Sedimentary Geology, Wiley, 359 p.
[65]  Nadeau, P.H. and Reynolds, R.G. (1981) Volcanic Components in Pelitic Sediments. Nature, 294, 72-74.
[66]  Seibertz, E. and Vortisch, W. (1979) Zur Stratigraphie, Petrologie und Genese einer Bentonit-Lage aus dem oberen Mittel-Turon (Oberkreide) des südöstlichen Münsterlandes. Geologische Rundschau, 68, 649-679.
https://doi.org/10.1007/bf01820811
[67]  Valeton, I. (19600 Vulkanische Tuffit-Einlagerung in der NW-deutschen Oberkreide. Mitteilungen aus dem Geologischen. Staatsinstitut in Hamburg, 29, 26-41.
[68]  Brockamp, O. (1976) Nachweis von Volkanismus in Sedimenten der Ober-und Unterkreide in Norddeutschland. Geologische Rundschau, 65, 162-174.
[69]  Krauskopf, K.B. (1982) Introduction to Geochemistry. McGraw-Hill International, 617 p.
[70]  Füchtbauer, H. and Schmincke, H.U. (1974) Sediments and Sedimentary Rocks. Part II, Sedimentary Petrology. Wiley, 464 p.
[71]  Milliman, J.D. (1974) Marine Carbonates. Recent Sedimentary Carbonates, Part 1. Springer-Verlag, 375 p.
[72]  Bathurst, R.G.C. (1975) Carbonate Sediments and Diagnosis. Developments in Sedimentology, No. 12. Elsevier, 658 p.
[73]  Vahrenholt, F. and Lüning, S. (2021) Unerwünschte Wahrheiten. LMV, 352 p.
[74]  van Andel, T.H. (1994) New Views on an Old Planet. Cambridge University Press, 402.
[75]  Stöffler, D. (2002) Bedrohung aus dem Weltall-Asteroiden und Kometen. An den Fronten der Forschung. Kosmos-Erde-Leben. Verhandlungen der Gesellschaft Deutscher Naturforscher und Arzte, Vol. 122, 81-97.
[76]  Lovelock, J. (1992) GAIA: Die Erde ist ein Lebewesen. Bern, München, Wien 1992 (Scherz); 192 Seiten.
[77]  Margulis, L. (2021) Der Symbiotische Planet. Westend Verlag, Frankfurt, 172 p.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133