全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

LiF对铝电解质熔盐性质的影响
The Effect of LiF on Properties of Aluminum Electrolyte Molten Salt

DOI: 10.12677/meng.2024.112011, PP. 92-100

Keywords: 富锂电解质,电解质性质,初晶温度,氧化铝溶解度,密度
Lithium Rich Electrolyte
, Electrolyte Properties, Liquidus Temperature, Alumina Solubility, Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

铝电解质被誉为铝电解槽的“血液”,其熔盐物理化学特性,直接影响着铝电解工艺控制参数的设置、技术经济指标及其槽况等。本文针对我国部分铝电解槽电解质含锂现状,分别从铝电解质的初晶温度、氧化铝溶解度、密度等关键性质方面,详细阐述了锂盐富集对电解质熔盐性质的影响,以期为富锂电解槽工艺参数的设置与优化提供理论基础与指导。
Aluminum electrolyte is known as the “blood” of aluminium electrolyser, and its physical and chemical properties directly affect the setting of control parameters, technical and economic indicator and cell conditions of aluminum electrolysis process. In view of the current situation of lithium salt in electrolytes of some aluminum electrolytic cells in China. In this paper, the influence of lithium salt enrichment on the molten salt properties of electrolytes is described in detail in terms of key properties such as liquidus temperature, alumina solubility and density. In order to provide theoretical basis and guidance for the setting and optimization of process parameters of Li-rich electrolyser.

References

[1]  张蔚. 汽车摆臂用Al-Mg-Si多元铝合金组织和性能的研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2017.
[2]  Grjotheim, K., Malinovsky, C.K.M. and Matiasovsky, K. (2002) Aluminium Electrolysis: Fundamentals of the Hall-Heroult Process. Aluminium Verlag Marketing & Kommunikation GmbH, Düsseldorf, 53.
[3]  Chin, D.A. and Hollingshead, E.A. (1966) Liquidus Curves for Aluminum Cell Electrolyte. Journal of the Electrochemical Society, 113, Article 736.
https://doi.org/10.1149/1.2424103
[4]  Solheim, A., Stoen, L. and Kvello, J. (2012) Cryoscopic Data for Hall-Héroult Bath Containing Magnesium Fluoride, Calcium Fluoride, Potassium Cryolite, and Sodium Chloride. In: Suarez, C.E., Ed., Light Metals 2012. Springer, Cham, 763-768.
https://doi.org/10.1007/978-3-319-48179-1_131
[5]  Solheim, A., Rolseth, S., Skybakmoen, E., et al. (1996) Liquidus Temperatures for Primary Crystallization of Cryolite in Molten Salt Systems of Interest for Aluminum Electrolysis. Metallurgical and Materials Transactions B, 27, 739-744.
https://doi.org/10.1007/BF02915602
[6]  曹大力, 邱竹贤, 王吉坤, 等. 锂盐在铝电解中的作用[J]. 材料导报, 2006, 20(8): 90-93.
[7]  Hongmin, K., Yungang, B., Zhuxian, Q., et al. (2007) Liquidus Temperature, Density and Electrical Conductivity of Electrolyte for Aluminum Electrolysis. The Chinese Journal of Process Engineering, 7, 604-609.
[8]  阚洪敏, 王兆文, 班允刚, 等. NaCl和LiF的添加对铝电解质初晶温度影响的研究[J]. 冶金分析, 2007, 27(3): 13-17.
[9]  阚洪敏, 班允刚, 石忠宁, 等. LiF对铝电解质物理化学性质的影响[C]//国务院学位办教育部. 2006年全国博士生学术论坛——冶金工程分论坛论文集. 沈阳: 教育出版社, 2006: 85-88.
[10]  陈建设, 李德祥. 铝电解质Na3AlF6-AlF3-LiF-MgF2-CaF2系初晶温度上20℃的熔盐性质和等溶成分[J]. 轻金属, 2009(1): 22-26.
[11]  Chen, B.X., Peng, J.P., Wang, Y.W., et al. (2020) Study on Liquidus Temperature of NaF-KF-LiF-AlF3 System with Low Cryolite Ratio. Metallurgical and Materials Transactions B, 51, 1181-1189.
https://doi.org/10.1007/s11663-020-01800-4
[12]  吕晓军, 双亚静, 胡凌云, 等. 铝电解质初晶温度和氧化铝溶解度的理论计算[J]. 轻金属, 2015(9): 27-31.
[13]  Robert, E., Olsen, J.E., Danek, V., et al. (2014) Structure and Thermodynamics of Alkali Fluoride-Aluminum Fluoride-Alumina Melts. Vapor Pressure, Solubility, and Raman Spectroscopic Studies. Journal of Physical Chemistry B, 101, 9447-9457.
https://doi.org/10.1021/jp9634520
[14]  Skybakmoen, E., Solheim, A. and Sterten, S. (1997) Alumina Solubility in Molten Salt Systems of Interest for Aluminum Electrolysis and Related Phase Diagram Data. Metallurgical and Materials Transactions B, 28, 81-86.
https://doi.org/10.1007/s11663-997-0129-9
[15]  Peng, J., Wei, Z., Di, Y., et al. (2020) Alumina Solubility in NaF-KF-LiF-AlF3-Based Low-Temperature Melts. JOM, 72, 239-246.
https://doi.org/10.1007/s11837-019-03873-2
[16]  邱竹贤. 铝冶金物理化学[M]. 上海: 上海科学技术出版社, 1985: 113.
[17]  张跃宏, 翟秀静, 李斌川. 钾盐和锂盐对电解质初晶温度、密度、电导率的影响[C]//中国有色金属学会. 全国有色金属工业低碳经济及冶炼废气减排学术研讨会论文集. 长沙: 中南大学出版社, 2010: 31-33.
[18]  Chrenkova, M., Danek, V., Silny, A. and Utigard, T.A. (1996) Density, Electrical Conductivity and Viscosity of Low Melting Baths for Aluminum Electrolysis. TMS, Anaheim, 312.
[19]  马秀芳, 李德祥, 陈建设, 等. Na3AlF6-AlF3-LiF-CaF2系熔体的等溶初晶温度和等溶变温密度[J]. 中国有色金属学报, 2000, 10(1): 109.
[20]  马秀芳, 张世荣, 李德祥, 等. Na3AlF6-AlF3-LiF-CaF2系熔体变温密度的研究[J]. 有色金属, 1999(1): 61-64.
[21]  Wang, X., Peterson, R.D. and Tabereaux, A.T. (1992) Electrical Conductivity of Cryolitic Melts. In: Bearne, G., Dupuis, M. and Tarcy, G., Eds., Essential Readings in Light Metals. Springer, Cham. 57-64.
https://doi.org/10.1007/978-3-319-48156-2_8
[22]  Choudhary, G. (1973) Electrical Conductivity for Aluminum Cell Electrolyte between 950?-1025?C by Regression Equation. Journal of the Electrochemical Society, 120, Article 381.
https://doi.org/10.1149/1.2403460
[23]  Lv, X., Han, Z., Chen, J., et al. (2018) First-Principles Molecular Dynamics Study of Ionic Structure and Transport Properties of LiF-NaF-AlF3 Molten Salt. Chemical Physics Letters, 706, 237-242.
https://doi.org/10.1016/j.cplett.2018.06.005
[24]  Yoshida, K. and Dewing, E.W. (1972) The Apparent Solubility of Aluminum in Cryolite Melts. Metallurgical Transactions, 3, 1817-1821.
https://doi.org/10.1007/BF02642565
[25]  ?deg?rd, R. Sterten, ?. and Thonstad, J. (1988) On the Solubility of Aluminum in Cryolitic Melts. Metallurgical and Materials Transactions B, 19, 449-457.
https://doi.org/10.1007/BF02657743
[26]  Haarberg, G.M., Thonstad, J., Pietrzyk, S., et al. (2002) The Role of Dissolved Metal during Electrode Position of Aluminium from Cryolite-Alumina Melts. 131st TMS Annual Meeting 2002, Warrendale, 17 February 2002, 1083-1089.
[27]  Ujasinovic, V.L. J. (1990) Results of an Experimental Use of LiF in Industrial Pots. Light Metals, 341.
[28]  Wang, X., Peterson, R.D. and Richards, N.E. (1990) Dissolved Metals in Cryolitic Melts. In: Bearne, G., Dupuis, M. and Tarcy, G., Eds., Essential Readings in Light Metals. Springer, Cham, 49-56.
https://doi.org/10.1007/978-3-319-48156-2_7
[29]  Fellner, R. and Midtlyng, S. (1993) Electrical Conductivity of Low Melting Bath for Aluminium Electrolysis: The System Na3AlF6-2Li3AlF6-2AlF3 and the Influence of Additions of Al2O3, CaF2 and MgF2. Journal of Applied Electrochemistry, 23, 78-81.
https://doi.org/10.1007/BF00241580
[30]  Fellner, R., Hives, J. and Korenko, M. (2001) Cathodic Overvoltage and the Content of Sodium and Lithium in Molten Aluminiumfuring Electrolysis of Cryolite-Based Melt. Electrochimica Acta, 46, 2379-2384.
https://doi.org/10.1016/S0013-4686(01)00432-7

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413