The detection of DNA as the transforming principle in bacteria 95 years ago, almost immediately led to 1) refutation of the old and heavily disputed concept of inheritance of acquired featured, since this would necessitate rewriting of “the book of life” by environmental factors, such as nutrition, stress, and 2) exclusion of the existence of any matter of inheritance different from DNA and genes. In this opinion paper, it is intended to overcome this narrowing by the re-consideration of other cellular constituents, i.e., plasma membranes (PMs) and organelles as well as the previously identified extracellular vesicles (EVs) and micelle-like complexes, which may operate as vehicles of the transfer of so-called M(E)Ls from donor to acceptor cells, from parental to offspring organisms, as non-DNA matter of biological inheritance. M(E)Ls represent arrangements of integral and peripheral membrane proteins, glycosylphosphatidylinositol-anchored proteins (GPI-APs) and cytoskeletal protein components in concert with cholesterol and (glyco)phospholipids into structures of characteristic configuration and topology and function, e.g., blebs, protuberances, invaginations. Recent experimental studies have demonstrated that upon release from donor cells and subsequent transfer to and replication by mechanisms of self-organization (rather than self-assembly) in acceptor cells, those MELs induce novel metabolic phenotypes, such as stimulation of lipid and glycogen synthesis. Most crucial, in rats and humans the structure of MELs is susceptible to environmental factors, such as mechanical distortion, nutrition, which may contribute to phenotypic plasticity and the inheritance of acquired traits. Those epigenetic mechanisms, which are apparently not based on modifications of DNA and DNA-associated proteins, have not been adequately addressed so far in studies on the pathogenesis of common complex diseases. The presented opinion is aimed at the initial encouragement for the identification and characterization of some of the (most important) reasons for the adherence to the “DNA-/gene-centric” conception of biological inheritance for almost a century and the accompanying ongoing exclusion of intercellular and transgenerational transfer of non-DNA matter from the repertoire of (epi)genetic mechanisms for the explanation of phenotypic plasticity and the inheritance of acquired traits. The unraveling of the network of human and non-human actors constituting the apparatuses of the production and observation of the phenomenon of inheritance, including
References
[1]
Agrawal, A. A., Laforsch, C., & Tollrian, R. (1999). Transgenerational Induction of Defences in Animals and Plants. Nature, 401, 60-63. https://doi.org/10.1038/43425
[2]
Anfinsen, C. B., & Haber, E. (1961). Studies on the Reduction and Re-Formation of Protein Disulfide Bonds. Journal of Biology Chemistry, 236, 1361-1363. https://doi.org/10.1016/S0021-9258(18)64177-8
[3]
Aufderheide, K. J. (2002). Cortical Inheritance. In M. Pagel (Ed.), The Encyclopedia of Evolution(pp. 164-167). Oxford University Press.
[4]
Avery, O. T., MacLeod, C. M., & McCarty, M. (1944). Studies on the Chemical Transformation of Pneumococcal Types. Journal of Experimental Medicine, 79, 137-158. https://doi.org/10.1084/jem.79.2.137
[5]
Avital, T., & Jablonka, E. (2001). Animal Traditions: Behavioural Inheritance in Evolution. Cambridge University Press. https://doi.org/10.1017/CBO9780511542251
[6]
Barad, K. (2003). How Material-Discursive Practices Matter. Signs, 28, 803-831. https://doi.org/10.1086/345321
[7]
Barad, K. (2007). Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning. Duke University Press. https://doi.org/10.2307/j.ctv12101zq
[8]
Barad, K. (2010). Quantum Entanglements and the Hauntological Relations of Inheritance: Dis/Continuities, Space/Time Enfoldings, and Justice-to-Come. Derrida Today, 3, 240-268. https://doi.org/10.3366/drt.2010.0206
[9]
Barad, K. (2011). Erasers and Erasures: Pinch’s Unfortunate ‘Uncertainty Principle’. Social Study Sciences, 41, 443-454. https://doi.org/10.1177/0306312711406317
Beisson, J. (2008). Preformed Cell Structure and Cell Heredity. Prion, 2, 1-8. https://doi.org/10.4161/pri.2.1.5063
[12]
Bhattarai, K., Maharjan, B., Acharya, S., Bigyan, K. C., Pandit, R., Regmi, R., Bhusal, B., Neupane, N., & Poudel, M. R. (2021). Epigenetic Modifications and Its Basic Mechanism. Journal of Integrative Agriculture, 8, 19-25. https://doi.org/10.37446/jinagri/ra/8.1.2021.19-25
[13]
Bohr, B. (1985). Atomphysik und menschliche Erkenntnis: Aufsätze und Vorträge aus den Jahren 1930-1961.Vieweg+Teubner Verlag Wiesbaden. https://doi.org/10.1007/978-3-322-88801-3
[14]
Briggs, R., & King, T. J. (1952). Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs’ Eggs. Proceedings of the National Academy of Sciences USA, 38, 455-463.
[15]
Cavalier-Smith, T. (2004). The Membranome and Membrane Heredity in Development and Evolution. In R. P. Hirt, & D. S. Hoerner (Eds.), Organelles, Genomes, and Eukaryote Phylogeny—An Evolutionary Synthesis in the Age of Genomics (pp. 335-351). CRC Press. https://doi.org/10.1201/9780203508930.ch15
[16]
Chernoff, Y. O. (2001). Mutation Processes at the Protein Level: Is Lamarck Back? Mutation Research, 488, 39-64. https://doi.org/10.1016/S1383-5742(00)00060-0
[17]
Cocucci, E., & Meldolesi, J. (2015). Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. Trends in Cell Biology, 25, 364-372. https://doi.org/10.1016/j.tcb.2015.01.004
[18]
Cogoli, A. (2002). Cell Biology and Biotechnology in Space: Advances in Space Biology and Medicine(Vol. 2). Elsevier.
[19]
Darwin, C. (1868). The Variation of Animals and Plants under Domestication. John Murray.
[20]
Darwin, C. (1869). Pangenesis: Mr. Darwin’s Reply to Professor Delphino Scientific Opinion: A Weekly Record of Scientific Progress at Home & Abroad. https://darwin-online.org.uk/content/frameset?itemID=F1748b&viewtype=text&pageseq=1
[21]
Darwin, C. (1871). Pangenesis. Nature, 3, 502-503. https://doi.org/10.1038/003502a0
[22]
Dickins, T. E. (2023). The Role of Information in Evolutionary Biology.Acta Biotheoretica, 71, Article No. 17. https://doi.org/10.1007/s10441-023-09468-4
[23]
Dupont, C., Armant, D. R., & Brenner, C. A. (2012). Epigenetics: Definition, Mechanisms and Clinical Perspective. Seminars in Reproduction Medicine, 27, 351-357. https://doi.org/10.1055/s-0029-1237423
[24]
Feil, R., & Fraga, M. (2012). Epigenetics and the Environment: Emerging Patterns and Implications. Nature Reviews in Genetics, 13, 97-109. https://doi.org/10.1038/nrg3142
[25]
Feldman, J. L., Geimer, S., & Marshall, W. F. (2007). The Mother Centriole Play an Instructive Role in Defining Cell Geometry. PLOS Biology, 5, 1284-1297. https://doi.org/10.1371/journal.pbio.0050149
[26]
Ferreira Ruiz, M. (2021). What Is Causal Specificity About, and What Is It Good for in Philosophy of Biology? Acta Biotheoretica, 69, 821-839. https://doi.org/10.1007/s10441-021-09419-x
[27]
Fox Keller, E. (1995). Refiguring Life: Metaphors of Twentieth Century Biology. Columbia University Press. https://doi.org/10.7312/kell92562
[28]
Galton, F. (1871). Experiments in Pangenesis, by Breeding from Rabbits of a Pure Variety, into Whose Circulation Blood Taken from Other Varieties Had Previously Been Largely Transfused. Proceedings of the Royal Society London, 19, 393-410. https://doi.org/10.1098/rspl.1870.0061
[29]
Gärtner, C. F. (1849). Versuche und Beobachtungen über die Bastarderzeugung im Pflanzenreich. Herring. https://doi.org/10.5962/bhl.title.50413
[30]
Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G. et al. (2010). Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science, 329, 52-56. https://doi.org/10.1126/science.1190719
[31]
Gottlieb, J. (2003). Behavioral Development and Evolution. In B. K. Hall, & W. M. Olson (Eds.), Keywords and Concepts in Evolutionary Developmental Biology(pp. 14-23). Harvard University Press. https://doi.org/10.2307/j.ctv228vqrq.7
[32]
Gray, R. D. (1992). Death of the Gene: Developmental Systems Strike Back. In P. E. Griffiths (Ed.), Trees of Life: Essays on the Philosophy of Biology(pp. 165-209). Kluwer. https://doi.org/10.1007/978-94-015-8038-0_7
[33]
Griffith, F. (1928). The Significance of Pneumococcal Types. Journal of Hygiene, XXVII, 135-159. https://doi.org/10.1017/S0022172400031879
[34]
Griffiths, P. E. (2001). Genetic Information: A Metaphor in Search of a Theory. Philosophy of Science, 68, 394-412. https://doi.org/10.1086/392891
[35]
Griffiths, P. E., & Gray, R. D. (2001). Darwinism and Developmental Systems. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of Contingency: Developmental Systems and Evolution(pp. 85-129). MIT Press.
[36]
Gurdon, J. B. (1964). The Transplantation of Living Cell Nuclei. Advances in Morphogenesis, 4, 1-43. https://doi.org/10.1016/B978-1-4831-9951-1.50004-8
[37]
Hacking, I. (1983). Representing and Intervening: Introductory Topics in the Philosophy of Natural Science(pp. 13-40). Cambridge University Press. https://doi.org/10.1017/CBO9780511814563
[38]
Halfmann, R., & Lindquist, S. (2010). Epigenetics in the Extreme: Prions and the Inheritance of Environmentally Acquired Traits. Science, 330, 629-632. https://doi.org/10.1126/science.1191081
[39]
Hammond, T. G., Benes, E., O’Reilly, K. C., Wolf, D. A., Linnehan, R. M., Taher, A., Kaysen, J. H., Allen, P. L., & Goodwin. T. J. (2000). Mechanical Culture Conditions Effect Gene Expression: Gravity-Induced Changes on the Space Shuttle. Physiological Genomics, 3, 163-173. https://doi.org/10.1152/physiolgenomics.2000.3.3.163
[40]
Haraway, D. J. (1997). Modest_Witness@Second_Millennium.FemaleMan_Meets_OncoMouse: Feminism and Technoscience. Routledge.
[41]
Haraway, D. J. (2017). Monströse Versprechen: Eine Erneuerungspolitik für un/an/geeignete Andere. In D. J. Haraway (Ed.), Monströse Versprechen: Die Gender-und Technologie-Essays(pp. 35-123). Argument.
[42]
Harvey, Z. H., Chen, Y., & Jarosz, D. F. (2018). Protein-Based Inheritance: Epigenetics beyond the Chromosome. Molecular Cell, 69, 195-202. https://doi.org/10.1016/j.molcel.2017.10.030
[43]
Holton, G. (1973). Thematic Origins of Scientific Thought: Keppler to Einstein. Harvard University Press.
[44]
Hoppe, K., & Lemke, T. (2021). Performativer Materialismus: Karen Barad und die Macht der Phänomene. In K. Hoppe, & T. Lemke (Eds.), Neue Materialismen zur Einführung (pp. 59-80). Junius.
[45]
Howard, J. (2009). Why Didn’t Darwin Discover Mendel’s Laws? Journal of Biology, 8, Article No. 15. https://doi.org/10.1186/jbiol123
[46]
Hurst, G. (2002). Cytoplasmic Genes. In M. Pagel (Ed.), The Encyclopedia of Evolution(pp. 189-232). Oxford University Press.
[47]
Immelmann, K. (1975). Ecological Significance of Imprinting and Early Learning. Annual Review of Ecological and Evolutionary Systems, 6, 15-37. https://doi.org/10.1146/annurev.es.06.110175.000311
[48]
Jarosz, D. F., Brown, J. C. S., Walker, G. S., Datta, M. S., Ung, W. L., Lancaster, A. K., Rotem, A., Chang, A., Newby, G. A., Weitz, D. A., Bisson, L. F., & Lindquist, L. (2014). Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism. Cell, 158, 1083-1093. https://doi.org/10.1016/j.cell.2014.07.025
[49]
Kammerer, P. (1907a). Vererbung erzwungener Fortpflanzungsanpassungen I. und II. Mitteilung: Die Nachkommen der spätgebornen Salamandra maculosa und der frühgebornen Salamandra atra. Archiv für Entwicklungmechanik der Organismen, 25, 7-51. https://doi.org/10.1007/BF02292160
[50]
Kammerer, P. (1907b). Vererbung erzwungener Fortpflanzungsanpassungen und deren Vererbung; Demonstration neuer Tierbastarde. Centralblatt für Physiologie, XXI, 253-255.
[51]
Kammerer, P. (1908). Über Vererbung erworbener Eigenschaften. Das Wissen für Alle, 14,6-216.
[52]
Kammerer, P. (1909). Vererbung erzwungener Fortpflanzungsanpassungen III. Mitteilung: Die Nachkommen der nicht brutpflegenden Alytes obstetricanus. Archiv für Entwicklungmechik der Organismen, 28, 447-545. https://doi.org/10.1007/BF02162072
[53]
Knorr Cetina, K. (1999). Epistemic Cultures:How the Sciences Make Knowledge (pp. 12-18). Harvard University Press. https://doi.org/10.4159/9780674039681
[54]
Koonin, E. V. (2012). Does the Central Dogma Still Stand? Biology Direct, 7, Article No. 27. https://doi.org/10.1186/1745-6150-7-27
[55]
Kosin, I. L., & Kato, M. (1963). A Failure to Induce Heritable Changes in Four Generations of the White Leghorn Chicken by Inter-and Intra-Specific Blood Transfusion. Genetics Research, 4, 221-239. ttps://doi.org/10.1017/S0016672300003578
[56]
Kushner, H. E. (1957). The Effect of Metabolic Factors on Inheritance in Animals. Agrobiologija, 1, 19-35.
[57]
Kussell, E., & Leibler, S. (2005). Phenotypic Diversity, Population Growth, and Information in Fluctuating Environments. Science, 309, 2075-2078. https://doi.org/10.1126/science.1114383
[58]
Lacey, E. P. (1998). What Is an Adaptive Environmentally Induced Parental Effect. In T. A. Mousseau, & C. W. Fox (Eds.), Maternal Effects as Adaptations(pp. 54-66). Oxford University Press. https://doi.org/10.1093/oso/9780195111637.003.0004
[59]
Lancaster, A. K., Bardill, J. P., True, H. L., & Masel, J. (2010). The Spontaneous Appearance Rate of the Yeast Prion [PSI+] and Its Implications for the Evolution of the Evolvability Properties of the [PSI+] Systems.Genetics, 184, 393-400. https://doi.org/10.1534/genetics.109.110213
[60]
Landman, O. E. (2022). Inheritance of Acquired Characteristic Revisited. BioScience, 43, 696-705. https://doi.org/10.2307/1312341
[61]
Leroy, P., & Benoit, J. (1963). Results Obtained with Third and Fourth Generation Progeny of Rhode Island Red Fowls Treated with Guinea Fowl Blood. Comptes Rendus de l’Académie des Science, 256, 4501-4504.
[62]
Lewontin, R. (1993).The Doctrine of DNA: Biology as Ideology. Penguin.
[63]
Li, X., & Liu, Y. (2010). The Conversion of Spring Wheat into Winter Wheat and Vice Versa: False Claim or Lamarckian Inheritance? Journal of Biosciences, 35, 321-325. https://doi.org/10.1007/s12038-010-0035-1
[64]
Liebman, S. W., & Chernoff, Y. O. (2012). Prions in Yeast. Genetics, 191, 1041-1072. https://doi.org/10.1534/genetics.111.137760
[65]
Liu, Y. (2008). A New Perspective on Darwin’s Pangenesis. Biological Reviews, 83,141-149. https://doi.org/10.1111/j.1469-185X.2008.00036.x
[66]
Liu, Y. S., & Chen, Q. (2018). 150 Years of Darwin’s Theory of Intercellular Flow of Hereditary Information. Nature Reviews Molecular Cell Biology, 19, 749-750. https://doi.org/10.1038/s41580-018-0072-4
[67]
Liu, Y. S., & Li, X. J. (2014). Has Darwin’s Pangenesis Been Rediscovered? BioScience, 64, 1037-1041. https://doi.org/10.1093/biosci/biu151
[68]
Liu, Y. S., Zhou, X. M., Zhi, M. X., Li, X. J., & Wang, Q. L. (2009). Darwin’s Contributions to Genetics. Journal of Applied Genetics, 50, 177-184. https://doi.org/10.1007/BF03195671
[69]
Lockshon, D. (2002). A Heritable Structural Alteration of the Yeast Mitochondrion. Genetics, 161, 1425-1435. https://doi.org/10.1093/genetics/161.4.1425
[70]
Lowe, P. C., Kinney, T. B., & Wilson, S. P. (1968). Further Attempts to Induce Heritable Changes in the Fowl by Interspecies Blood Transfer. Poultry Science, 47, 576-579. https://doi.org/10.3382/ps.0470576
[71]
Lyssenko, T. D. (1951). Agrobiologie. Arbeiten über Fragen der Genetik, der Züchtung und des Samenbaus.Verlag Kultur und Fortschritt.
[72]
Lyssenko, T. D. (1958). The Influence of the Time of the Second Autumn Sowing on the Conversion of Spring Wheat to Winter Wheat. Trudy Institute of Genetics, 24, 232-237.
[73]
Maglio, L. E., Perez. M. F., Martins, V. R., Brentani, R. R., & Ramirez, O. A. (2004). Hippocampal Synaptic Plasticity in Mice Devoid of Cellular Prion Protein. Molecular Brain Research, 131, 58-64. https://doi.org/10.1016/j.molbrainres.2004.08.004
[74]
Mahmoud, A. (2022). An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. International Journal of Molecular Sciences, 23, Article 1341. https://doi.org/10.3390/ijms23031341
[75]
Manjrekar, J., & Shah, H. (2020). Protein-Based Inheritance. Seminars in Cellular and Developmental Biology, 97, 138-155. https://doi.org/10.1016/j.semcdb.2019.07.007
[76]
Margulis, T., & Sagan, A. (2002). Acquiring Genomes: A Theory of the Origins of Species. Basic Books.
[77]
Mathieu, M., Martin-Jaular, L., Lavieu, G., & Thery, C. (2019). Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-To-Cell Communication. Nature Cell Biology, 21, 9-17. https://doi.org/10.1038/s41556-018-0250-9
[78]
Maynard Smith, J. (2000). The Concept of Information in Biology. Philosophy of Science, 62, 177-194. https://doi.org/10.1086/392768
[79]
Medwedjew, S. A. (1969).The Rise and Fall of T.D. Lysenko. Columbia University Press. https://doi.org/10.7312/medv92664
[80]
Moore, D. S. (2017). The Potential of Epigenetics Research to Transform Conceptions of Phenotype Development. Human Development, 60, 69-80. https://doi.org/10.1159/000477992
[81]
Moreira-Leite, F. F., Sherwin, T., Kohl, L., & Gull, K. (2001). A Trypansome Structure Involved in Transmitting Cytoplasmic Information during Cell Division. Science, 294, 610-612. https://doi.org/10.1126/science.1063775
[82]
Müller, G. (2012). Microvesicles/Exosomes as Potential Novel Biomarkers for Metabolic Diseases. Diabetes, Metabolic Syndrome and Obesity, 5, 247-282. https://doi.org/10.2147/DMSO.S32923
[83]
Müller, G. A. (2018).Glycosylphosphatidylinositol-Anchored Proteins and Their Release from Cells—From Phenomenon to Meaning. Nova Science Publishers.
[84]
Müller, G. A. (2024). Donation and Acceptance in Biological Inheritance: The Long Path from Darwin’s Gemmules, DNA and Membranes to Uniqueness and Kinship. Advances in Historical Studies, 13, 26-72. https://doi.org/10.4236/ahs.2024.132003
[85]
Müller, G. A., & Müller, T.D. (2024). From Intercellular Transfer of GPI-Anchored Proteins to Transgenerational Inheritance of Non-Genetic Matter. Genetica. (In Press)
[86]
Müller, G. A., Herling, A. W., Stemmer, K., Lechner, A., & Tschöp, M. H. (2019). Chip-Based Sensing for Release of Unprocessed Cell Surface Proteins in Vitro and in serum and Its (Patho) Physiological Relevance. American Journal of Physiology: Endocrinolology and Metabolism, 317,E212-E233. https://doi.org/10.1152/ajpendo.00079.2019
[87]
Müller, G. A., & Müller, T. D. (2023a). Transfer of Proteins from Cultured Human Adipose to Blood Cells and Induction of Anabolic Phenotype Are Controlled by Serum, Insulin and Sulfonylurea Drugs. International Journal of Molecular Sciences, 24, Article 4825. https://doi.org/10.3390/ijms24054825
[88]
Müller, G. A., & Müller, T. D. (2023b). (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules, 13, Article 855. https://doi.org/10.3390/biom13050855
[89]
Müller, G. A., & Müller, T. D. (2023c). (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (of Inheritance?) That Matters. Biomolecules, 13, Article 994. https://doi.org/10.3390/biom13060994
[90]
Müller, G. A., & Müller, T. D. (2024). Transfer of Membrane(s) Matter(s)—Non-Genetic Inheritance of (Metabolic) Phenotypes? Frontiers in Molecular Biosciences, 11, Article 1347397. ps://doi.org/10.3389/fmolb.2024.1347397
[91]
Müller, R., Hanson, C., Hanson, M., Penkler, M., Samaras, G., Chiapperino, L., Dupré, J., Kenney, M., Kuzawa, C., Latimer, J. et al. (2017). The Biosocial Genome? Interdisciplinary Perspectives on Environmental Epigenetics, Health and Society. EMBO Reports, 18, 1677-1682. https://doi.org/10.15252/embr.201744953
[92]
Nelkin, D. (2001). Molecular Metaphors: The Gene in Popular Discourse. Nature Reviews in Genetics, 2, 555-559. https://doi.org/10.1038/35080583
[93]
Newby, G. A., & Lindquist, S. (2013). Blessings in Disguise: Biological Benefits of Prion-Like Mechanisms. Trends in Cell Biology, 23, 251-259. https://doi.org/10.1016/j.tcb.2013.01.007
[94]
Niewöhner, J. (2011). Epigenetics: Embedded Bodies and the Molecularisation of Biography and Milieu. BioSocieties, 6, 279-298. https://doi.org/10.1057/biosoc.2011.4
[95]
Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche Construction: The Neglected Process in Evolution. Princeton University Press.
[96]
Orel, V. (1996). Gregor Mendel: The First Geneticist. Oxford University Press.
[97]
Paterson, A. M., & Gray, R. D. (1996). Co-speciation of Birds and Ectoparasites. In D. H. Clayton, & J. Moore (Eds.), Co-Evolutionary Biology of Birds and Parasites(pp. 58-77). Oxford University Press.
[98]
Raposo, G., & Stahl, P. D. (2019). Extracellular Vesicles: A New Communication Paradigm? Nature Reviews Molecular Cell Biology, 20, 509-510. https://doi.org/10.1038/s41580-019-0158-7
[99]
Sapp, J. (1987). Beyond the Gene: Cytoplasmic Inheritance and the Struggle for Authority in Genetics. Oxford University Press.
[100]
Sapp, J. (2003). Inheritance: Extragenomic. In B. K. Hall, & W. M. Olson (Eds.), Keywords and Concepts in Evolutionary Developmental Biology (pp. 201-209). Harvard University Press. https://doi.org/10.4159/9780674273320-031
[101]
Schindler, D., Walker, R. S. K., Jiang, S., Brooks, A. N., Wang, Y., Müller, C. A., Cockram, C., Luo, Y., García, A., Schraivogel, D. et al. (2023). Design, Construction, and Functional Characterization of a tRNA Neochromosome in Yeast. Cell, 186, 5237-5253.E22. https://doi.org/10.1016/j.cell.2023.10.015
[102]
Schuol, S. (2016). Widerlegt die Epigenetik den Gendeterminismus? In R. Heil (Ed.), Epigenetik(pp. 45-58). Springer. https://doi.org/10.1007/978-3-658-10037-7_4
[103]
Shirokawa, Y., & Shimada, M. (2016). Cytoplasmic Inheritance of Parent-Offspring Cell Structure in the Clonal Diatom Cyclotella Meneghiniana. Proceedings of the Royal Society B, 283, Article ID: 20161632. https://doi.org/10.1098/rspb.2016.1632
[104]
Shorter, J., & Lindquist, S. (2005). Prions as Adaptive Conduits of Memory and Inheritance. Nature Reviews Genetics, 6, 435-450. https://doi.org/10.1038/nrg1616
[105]
Shostak, S., & Moinester, M. (2015). The Missing Piece of the Puzzle? Measuring the Environment in the Postgenomic Moment. In S. Richardson, & H. Stevens (Eds.), Postgenomics: Perspectives on Biology after the Genome(pp. 192-209). De Gruyter. https://doi.org/10.1215/9780822375449-010
[106]
Sopikov, P. M. (1950). A New Method of Vegetative Hybridization by Blood Transfusion. Priroda, 39, 66.
[107]
Sopikov, P. M. (1954). Changes in Heredity by the Parenteral Administration of Blood. Agrobiogiia, 6, 34-45.
[108]
Soto, C. (2012). Transmissible Proteins: Expanding the Prion Heresy. Cell, 149, 968-977. https://doi.org/10.1016/j.cell.2012.05.007
[109]
Sterelny, K. (2000). The Genetic Program Program: A Commentary on Maynard Smith on Information in Biology. Philosophy of Science, 67, 195-201. https://doi.org/10.1086/392769
[110]
Sterelny, K. (2001). Niche Construction, Developmental Systems, and the Extended Replicator. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of Contingency: Developmental Systems and Evolution(pp. 102-126). MIT Press.
[111]
Stocker, B. A. D., Zinder, N. D., & Lederberg, J. (1953). Transduction of Flagellar Characters in Salmonella. Journal of General Microbiology, 9, 410-418. https://doi.org/10.1099/00221287-9-3-410
[112]
Stroun, J., Stroun-Guttieres, L., Rossi, J., & Stroun, M. (1963). Transfer to the Progeny of Alterations Induced in the White Leghorn by Repeated Injections of Heterologous Blood. Archives Des Sciences, 16, 247-262.
[113]
Stroun, M., & Anker, P. (2005). Circulating DNA in Higher Organisms: Cancer Detection Brings Back to Life: An Ignored Phenomenon. Cellular and Molecular Biology, 51, 767-774.
[114]
Szathmáry, E. (2000). The Evolution of Replicatory. Philosophical Transactions of the Royal Society B, 355, 1669-1676. https://doi.org/10.1098/rstb.2000.0730
[115]
Tabatabaiefar, M.A., Sajjadi, R.S., Narrei, S. (2019). Epigenetics and Common Non-Communicable Disease. Advances in Experimental Medicine and Biology, 1121, 7-20. https://doi.org/10.1007/978-3-030-10616-4_2
[116]
Tatum, E. L., & Lederberg, J. (1947). Gene Recombination in the Bacterium Escherichia coli. Journal of Bacteriology, 53, 673-679. https://doi.org/10.1128/jb.53.6.673-684.1947
[117]
Tikhodeyev, O. N., Tarasov, O. V., & Bondarev, S. A. (2017). Allelic Variants of Hereditary Prions: The Bimodularity Principle. Prion, 11, 4-24. https://doi.org/10.1080/19336896.2017.1283463
[118]
Tuite, M. F. (2015). Yeast Prions: Paramutations at the Protein Level? Seminars in Cell and Developmental Biology, 44, 51-61. https://doi.org/10.1016/j.semcdb.2015.08.016
[119]
Tyedmers, J., Madariaga, M. L., & Lindquist, S. (2008). Prion Switching in Response to Environmental Stress. PLOS Biology, 6, 2605-2613. https://doi.org/10.1371/journal.pbio.0060294
[120]
Uptain, S. M., & Lindquist, S. (2002). Prions as Protein-Based Genetic Elements. Annual Review of Microbiology, 56, 703-741. https://doi.org/10.1146/annurev.micro.56.013002.100603
[121]
Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nature Cell Biology, 9, 654-659. https://doi.org/10.1038/ncb1596
[122]
Valsiner, J. (2014). Epigenetik und Entwicklung: Drei Kontrollmodelle. In V. Lux, & J. T. Richter (Eds.), Kulturen der Epigenetik: Vererbt, Codiert, Übertragen(pp. 151-164). De Gruyter. https://doi.org/10.1515/9783110316032.151
[123]
Vargas, A. O. (2009). Did Paul Kammerer Discover Epigenetic Inheritance? A Modern Look at the Controversial Midwife Toad Experiments. Journal of Experimental Zoology, 312B, 667-678. https://doi.org/10.1002/jez.b.21319
[124]
Vecchi, D., & Santos, G. (2023). The Multi-Causal Basis of Developmental Potential Construction. Acta Biotheoretica, 71, Article No. 6. https://doi.org/10.1007/s10441-023-09456-8
[125]
Venetz, J. E., Medico, L. D., Wölfle, A., Schächle, P., Bucher, Y., Appert, D., Tschan, F., Flores-Tinoco, C. E., van Kooten, M., Guennoun, R., Deutsch, S., Christen, M., & Christen, B. (2019). Chemical Synthesis Rewriting of a Bacterial Genome to Achieve Design Flexibility and Biological Flexibility. Proceedings of the National Academy of Sciences of the United States of America, 116, 8070-8079. https://doi.org/10.1073/pnas.1818259116
[126]
Venville, G. J., Gribble, A. J., & Donovan, J. (2006). Metaphors for Genes. In P. J. Aubusson (Ed.), Metaphor and Analogy in Science Education(pp. 79-91). Springer. https://doi.org/10.1007/1-4020-3830-5_7
[127]
Vukic, M., Wu, H., & Daxinger, L. (2019). Making Headway Towards Understanding How Epigenetic Mechanisms Contribute to Early-Life Effects.Philosophical Transactions of the Royal Society London B Biological Sciences, 374, Article ID: 20180126. https://doi.org/10.1098/rstb.2018.0126
[128]
Waddington, C. H. (1968). Towards a Theoretical Biology. Nature, 218, 525-527. https://doi.org/10.1038/218525a0
[129]
Waggoner, M. R., & Uller, T. (2015). Epigenetic Determinism in Science and Society. New Genetics Society, 34, 177-195. https://doi.org/10.1080/14636778.2015.1033052
[130]
Walsh, D. M. (2020). Action, Program, Metaphor. Interdisciplinary Science Reviews, 45, 344-359. https://doi.org/10.1080/03080188.2020.1795803
[131]
Walton, A., & Hammond, J. (1938). The Maternal Effects on Growth and Conformation in Shire Horse-Shetland Pony Crosses. Proceedings of the Royal Society London B Biological Sciences, 125, 249-278. https://doi.org/10.1098/rspb.1938.0029
[132]
Weasel, L. (2016). Embodying Intersectionality: The Promise (and Peril) of Epigenetics for Feminist Science Studies. In V. Pitt-Taylor (Ed.), Mattering: Feminism, Science, and Materialism(pp. 104-121). New York University Press. https://doi.org/10.18574/nyu/9781479878840.003.0010
[133]
West-Eberhard, M. J. (1989). Phenotypic Plasticity and the Origins of Diversity. Annual Review of Ecology, Evolution and Systematics, 20, 249-278. https://doi.org/10.1146/annurev.es.20.110189.001341
[134]
West-Eberhard, M. J. (2008). Toward a Modern Revival of Darwin’s Theory of Evolutionary Novelty. Philosophy of Science, 75, 899-908. https://doi.org/10.1086/594533
[135]
Wheeler, M., & Clark, A. (1999). Genetic Representation: Reconciling Content and Causal Complexity. British Journal of the Philosophy of Science, 50, 103-135. https://doi.org/10.1093/bjps/50.1.103
[136]
Wickner, R. B. (2010). Prion Amyloid Structure Explains Templating: How Proteins Can Be Genes. FEMS Yeast Research, 10, 980-991. https://doi.org/10.1111/j.1567-1364.2010.00666.x
[137]
Wickner, R. B., Edskes, H. K., Ross, E. D., Pierce, M. M., Baxa, U., Brachmann, A., & Shewmaker, F. (2004). Prion Genetics: New Rules for a New Kind of Gene. Annual Review of Genetics, 38, 681-707. https://doi.org/10.1146/annurev.genet.38.072902.092200
[138]
Witherington, D. C., & Lickliter, R. (2017). Transcending the Nature-Nurture Debate through Epigenetics: Are We There Yet? Human Development, 60, 65-68. https://doi.org/10.1159/000478796
[139]
Yaffe, M. P. (1999). The Machinery of Mitochondrial Inheritance and Behavior. Science, 283, 1493-1497. https://doi.org/10.1126/science.283.5407.1493
[140]
Yakubov, L. A., Petrova, N. A., Popova, N. A., Semenov, D. V., Nikolin, V. P., & Os’kina, I. N. (2002). The Role of Extracellular DNA in the Stability and Variability of Cell Genomes. Doklady Biochemistry and Biophysics, 382, 31-34. https://doi.org/10.1023/A:1014403223031
[141]
Yanez-Mo, M., Siljander, P. R. M., Andreu, Z., Zavec, A. B., Borràs, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colás, E., Cordeiro-da Silva, A. et al. (2015). Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles, 4,Article ID: 27066. https://doi.org/10.3402/jev.v4.27066
[142]
Ziegler, A., Zangemeister-Wittke, U., & Stahel, R. A. (2002). Circulating DNA: A New Diagnostic Gold Mine? Cancer Treatment Reviews, 28, 255-271. https://doi.org/10.1016/S0305-7372(02)00077-4
[143]
Zirkle, C. (1951). Gregor Mendel and His Precursors. Isis, 42, 97-104. https://doi.org/10.1086/349277
[144]
Zoghbi, H. Y., & Beaudet, A. L. (2016). Epigenetics and Human Disease. Cold Spring Harbor Perspectives in Biology, 8, a019497. https://doi.org/10.1101/cshperspect.a019497