全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ovarian Tumors in Senegalese Women: Impact of D-Loop Mutations between Healthy and Cancerous Tissues

DOI: 10.4236/ojgen.2024.142004, PP. 37-46

Keywords: Ovarian, Cancer, Mutations, D-Loop, Heteroplasmy

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Senegal in particular, ovarian cancer, which is one of the most common gynecological cancers, accounts for 2.8% of deaths. The most important risk factor is genetic, with 10% of cases occurring in a context of genetic predisposition. The sequencing of the human genome, which has led to the discovery of millions of sequence variations, makes it possible to study variations within sequences. These variations are limited to Single Nucleotide Polymorphisms (SNPs) and this common form of polymorphism occurs approximately every 1000 bases in the human genome and 1.8 million SNPs are currently listed according to [1]. The aim of this study is to gain a better understanding of the impact of mutations in the D-loop region of mtDNA on ovarian cancer in Senegalese women. This study involved searching for mutations in our study population after DNA extraction and sequencing. Mutations were found after a comparison of our sequences with the Cambridge reference sequence (NC_012920). The mutations found in the DNA studied extend from position 7 to position 16568 and most of these mutations are located in the hypervariate zones (HV1 and HV2). Heteroplasmy with three mutant alleles was also found in certain variants. Common mutations were found in both healthy and cancerous tissues, with almost identical frequencies in both types of tissue. This enabled us to understand the spread of tumor cells throughout the ovary.

References

[1]  Le Morvan, V., Smith, D., Laurand, A., Brouste, V., Mathoulin-Pélissier, S., Soubeyran, I., Bellott, R. and Robert, J. (2007) Determination of ERCC2 Lys751Gln and GSTP1 Ile105Val Polymorphisms in Colorectal Cancer Patients: Relationships with Treatment Outcome. Pharmacogenomics, 8, 1693-1703.
https://doi.org/10.2217/14622416.8.12.1693
[2]  Fox, T.D. (2012) Mitochondrial Protein Synthesis, Import, and Assembly. Genetics, 192, 1203-1234.
https://doi.org/10.1534/genetics.112.141267
[3]  Miyazono, F., Schneider, P.M., Metzger, R., Warnecke-Eberz, U., Baldus, S.E., Dienes, H.P., et al. (2002) Des mutations dans la région de la boucle D de l’ADN mitochondrial se produisent fréquemment dans l’adénocarcinome de l’œsophage de Barrett. Oncogène, 21, 3780-3783.
https://doi.org/10.1038/sj.onc.1205532
[4]  Wallace, D.C. (1992) Maladies de l’ADN mitochondrial. Annual Review of Biochemistry, 61, 1175-1212.
https://doi.org/10.1146/annurev.bi.61.070192.005523
[5]  Levin, B.C., Cheng, H. and Reeder, D.J. (1999) Un matériau de référence standard pour l’ADN mitochondrial humain pour le contrôle de la qualité de l’identification médico-légale, du diagnostic médical et de la détection des mutations. Génomique, 55, 135-146.
https://doi.org/10.1006/geno.1998.5513
[6]  Fliss, M.S., Usadel, H., Caballero, O.L., et al. (2000) Détection facile des mutations de l’ADN mitochondrial dans les tumeurs et les fluides corporels. Science, 287, 2017-2019.
https://doi.org/10.1126/science.287.5460.2017
[7]  Alonso, A., Martin, P., Albarran, C., Aquilera, B., Garcia, O., Guzman, A., Oliva, H. and Sancho, M. (1997) Détection de mutations somatiques dans la région de contrôle de l’ADN mitochondrial des tumeurs colorectales et gastriques par analyse de conformation hétéroduplex et monobrin. Électrophorèse, 18, 682-685.
https://doi.org/10.1002/elps.1150180504
[8]  Suzuki, M., Toyooka, S., Miyajima, K., Iizasa, T., Fujisawa, T., Bekele, N.B. and Gazdar, A.F. (2003) Altérations de la boucle de déplacement mitochondrial dans les cancers du poumon. Clinical Cancer Research, 9, 5636-5641.
[9]  Richter, R., Pajak, A., Dennerlein, S., et al. (2010) Translation Termination in Human Mitochondrial Ribosomes. Biochemical Society Transactions, 38, 1523-1526.
https://doi.org/10.1042/BST0381523
[10]  Penta, J.S., Johnson, F.M., Wachsman, J.T. and Copeland, W.C. (2001) Mitochondrial DNA in Human Malignancy. Mutation Research, 488, 119-133.
https://doi.org/10.1016/S1383-5742(01)00053-9
[11]  Holt, I.J. (2019) The Mitochondrial R-Loop. Nucleic Acids Research, 47, 5480-5489.
https://doi.org/10.1093/nar/gkz277
[12]  Tengan, C.H., Ferreiro-Barros, C., Cardeal, M., Fireman, M.A.T., Oliveira, A.S.B., Kiyomoto, B.H. and Gabbai, A.A. (2002) Frequency of Duplications in the D-Loop in Patients with Mitochondrial DNA Deletions. Biochimica et Biophysica Acta, 1588, 65-70.
https://doi.org/10.1016/S0925-4439(02)00140-0
[13]  Hall, T.A. (1999) BioEdit: Un éditeur et un programme d’analyse d’alignement de séquences biologiques conviviaux pour Windows 95/98/NT. Série de Symposiums sur les Acides nucléIques, 41, 95-98.
[14]  Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) Amélioration de la sensibilité des recherches de profils grâce à l’utilisation de poids de séquence et d’excision d’espace. Bioinformatique, 10, 19-29.
https://doi.org/10.1093/bioinformatics/10.1.19
[15]  Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A. (2012) Geneious Basic: Une plate-forme logicielle de bureau intégrée et extensible pour l’organisation et l’analyse des données de séquences. Bioinformatique, 28, 1647-1649.
https://doi.org/10.1093/bioinformatics/bts199
[16]  Kogelnik, A.M., Lott, M.T., Brown, M.D., Navathe, S.B. and Wallace, D.C. (1996) MITOMAP: A Human Mitochondrial Genome Database. Nucleic Acids Research, 24, 177-179.
https://doi.org/10.1093/nar/24.1.177
[17]  Lott, M.T., Leipzig, J.N., Derbeneva, O., Xie, H.M., Chalkia, D., Sarmady, M., et al. (2013) Variation et analyse de l’ADNmt à l’aide de mitomap et mitomaster. Current Protocols in Bioinformatics, 44, 1.23.1-1.23.26.
https://doi.org/10.1002/0471250953.bi0123s44
[18]  Cohen, B.H. and Naviaux, R.K. (2010) Le diagnostic clinique de la maladie POLG et d’autres troubles de la déplétion de l’ADN mitochondrial. Méthodes, 51, 364-373.
[19]  Suárez-Rivero, J.M., Villanueva-Paz, M., de la Cruz-Ojeda, P., De la Mata, M., Cotán, D., Oropesa-Ávila, M., Sánchez-Alcázar, J.A., et al. (2016) Mitochondrial Dynamics in Mitochondrial Diseases. Diseases, 5, Article 1.
https://doi.org/10.3390/diseases5010001
[20]  Sanchez-Cespedes, M., Parrella, P., Nomoto, S., et al. (2001) Identification d’une répétition mononucléotidique comme cible majeure pour les altérations de l’ADN mitochondrial dans les tumeurs humaines. Cancer Research, 61, 7015-7019.
[21]  Frezza, C. (2014) The Role of Mitochondria in the Oncogenic Signal Transduction. The International Journal of Biochemistry & Cell Biology, 48, 11-17.
https://doi.org/10.1016/j.biocel.2013.12.013
[22]  Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., Yang, G., Chen, Y., Cheng, J., Lu, Y. and Liu, J. (2021) Mitochondrial ROS Promote Mitochondrial Dysfunction and Inflammation in Ischemic Acute Kidney Injury by Disrupting TFAM-Mediated mtDNA Maintenance. Theranostics, 11, 1845-1863.
https://doi.org/10.7150/thno.50905
[23]  Evan, G.I. and Vousden, K.H. (2001) Proliferation, Cell Cycle and Apoptosis in Cancer. Nature, 411, 342-348.
https://doi.org/10.1038/35077213

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133