全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Refinement of the Proposed Gamma-Ray Burst Time Delay Model

DOI: 10.4236/ijaa.2024.142008, PP. 120-147

Keywords: Gamma-Ray Bursts (GRB), Photon Mass, Plasma, Time Delay, Fireball Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hz and also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.

References

[1]  Joshi, J.C., Chand, V. and Razzaque, S. (2023) Synchrotron and Synchrotron Self-Compton Emission Components in GRBs Detected at Very High Energies. The 16th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG16 Meeting on General Relativity, 5-10 July 2021, 3009-3016.
https://doi.org/10.1142/9789811269776_0243
[2]  Huang, Y.F., Lu, T. and Cheng, K.S. (2007) Nonrelativistic Phase in Gamma-Ray Burst After-Glows.
[3]  Piro, L., De Pasquale, M., Soffitta, P., Lazzati, D., Amati, L., Costa, E., et al. (2005) Probing the Environment in Gamma-Ray Bursts: The Case of an X-Ray Precursor, Afterglow Late Onset, and Wind versus Constant Density Profile in GRB 011121 and GRB 011211. The Astrophysical Journal, 623, 314-324.
https://doi.org/10.1086/428377
[4]  Zou, Z.C., Zhang, B.B., Huang, Y.F. and Zhao, X.H. (2021) Gamma-Ray Burst in a Binary System. The Astrophysical Journal, 921, 2.
https://doi.org/10.3847/1538-4357/ac1b2d
[5]  Janiuk, A., James, B. and Sapountzis, K. (2021) Cosmic Gamma Ray Bursts. Acta Physica Polonica A, 139, 273-276.
https://doi.org/10.12693/aphyspola.139.273
[6]  Bromberg, O., Nakar, E. and Piran, T. (2011) Are Low-Luminosity Gamma-Ray Bursts Generated by Relativistic Jets? The Astrophysical Journal, 739, L55.
https://doi.org/10.1088/2041-8205/739/2/l55
[7]  Konigl, A. (1981) Relativistic Jets as X-Ray and Gamma-Ray Sources. The Astrophysical Journal, 243, 700-709.
https://doi.org/10.1086/158638
[8]  Kumar, P. and Zhang, B. (2015) The Physics of Gamma-Ray Bursts & Relativistic Jets. Physics Reports, 561, 1-109.
https://doi.org/10.1016/j.physrep.2014.09.008
[9]  Ciolfi, R. (2018) Short Gamma-Ray Burst Central Engines. International Journal of Modern Physics D, 27, Article ID: 1842004.
https://doi.org/10.1142/s021827181842004x
[10]  Levan, A.J., Tanvir, N.R., Starling, R.L.C., Wiersema, K., Page, K.L., Perley, D.A., et al. (2013) A New Population of Ultra-Long Duration Gamma-Ray Bursts. The Astrophysical Journal, 781, Article No. 13.
https://doi.org/10.1088/0004-637x/781/1/13
[11]  Nyambuya, G.G., Marusenga, S., Abbey, G.F., Simpemba, P. and Simfukwe, J. (2023) Correlation in Gamma Ray Burst Time Delays between Pairs of Radio Photons. International Journal of Astronomy and Astrophysics, 13, 195-216.
[12]  Hao, J. and Yuan, Y. (2013) Progenitor Delay-Time Distribution of Short Gamma-Ray Bursts: Constraints from Observations. Astronomy & Astrophysics, 558, A22.
https://doi.org/10.1051/0004-6361/201321471
[13]  Zhang, B. and Zhang, B. (2014) Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model. The Astrophysical Journal, 782, Article No. 92.
https://doi.org/10.1088/0004-637x/782/2/92
[14]  Albert, J., Aliu, E., Anderhub, H., Antonelli, L.A., Antoranz, P., Backes, M., et al. (2008) Probing Quantum Gravity Using Photons from a Flare of the Active Galactic Nucleus Markarian 501 Observed by the MAGIC Telescope. Physics Letters B, 668, 253-257.
https://doi.org/10.1016/j.physletb.2008.08.053
[15]  Martínez, M. and Errando, M. (2009) A New Approach to Study Energy-Dependent Arrival Delays on Photons from Astrophysical Sources. Astroparticle Physics, 31, 226-232.
https://doi.org/10.1016/j.astropartphys.2009.01.005
[16]  Zhang, B. (2019) The Delay Time of Gravitational Wave—Gamma-Ray Burst Associations. Frontiers of Physics, 14, Article No. 64402.
https://doi.org/10.1007/s11467-019-0913-4
[17]  Farias, K.E.L.d., Sampaio, T.A.M., Anacleto, M.A., Brito, F.A. and Passos, E. (2021) Lifshitz Scaling in CPT-Even Lorentz-Violating Electrodynamics and GRB Time Delay. The European Physical Journal Plus, 136, Article No. 257.
https://doi.org/10.1140/epjp/s13360-021-01228-y
[18]  Wijers, R.A.M.J., Bloom, J.S., Bagla, J.S. and Natarajan, P. (1998) Gamma-Ray Bursts from Stellar Remnants: Probing the Universe at High Redshift. Monthly Notices of the Royal Astronomical Society, 294, L13-L17.
https://doi.org/10.1046/j.1365-8711.1998.01328.x
[19]  Salam, A. and Ward, J.C. (1959) Weak and Electromagnetic Interactions. Il Nuovo Cimento, 11, 568-577.
https://doi.org/10.1007/bf02726525
[20]  Salmon, L., Hanlon, L. and Martin-Carrillo, A. (2022) Two Classes of Gamma-Ray Bursts Distinguished within the First Second of Their Prompt Emission. Galaxies, 10, Article No. 78.
https://doi.org/10.3390/galaxies10040078
[21]  Lazzati, D. (2020) Short Duration Gamma-Ray Bursts and Their Outflows in Light of Gw170817. Frontiers in Astronomy and Space Sciences, 7, Article ID: 578849.
https://doi.org/10.3389/fspas.2020.578849
[22]  Chandra, P. and Frail, D.A. (2012) A Radio-Selected Sample of Gamma-Ray Burst Afterglows. The Astrophysical Journal, 746, Article No. 156.
https://doi.org/10.1088/0004-637x/746/2/156
[23]  Martínez, M. and Errando, M. (2009) A New Approach to Study Energy-Dependent Arrival Delays on Photons from Astrophysical Sources. Astroparticle Physics, 31, 226-232.
https://doi.org/10.1016/j.astropartphys.2009.01.005
[24]  Matheson, T., Garnavich, P.M., Foltz, C., West, S., Williams, G., Falco, E., et al. (2002) The Spectroscopic Variability of GRB 021004. The Astrophysical Journal, 582, L5-L9.
https://doi.org/10.1086/367601
[25]  Zhang, B., Chai, Y., Zou, Y. and Wu, X. (2016) Constraining the Mass of the Photon with Gamma-Ray Bursts. Journal of High Energy Astrophysics, 11, 20-28.
https://doi.org/10.1016/j.jheap.2016.07.001
[26]  Aleksic, J., Alvarez, E.A., Antonelli, L.A., Antoranz, P., Asensio, M., Backes, M., et al. (2012) PG 1553+113: Five Years of Observations with MAGIC. The Astrophysical Journal, 748, Article No. 46.
[27]  Proca, A. (1936) Sur la Théorie du Positron. Comptes Rendus de lAcadémie des Sciences, 202, 1366-1368.
[28]  Abdo, A., Ackermann, M., Ajello, M., Allafort, A., Baldini, L., Ballet, J., et al. (2011) Insights into the High-Energy γ-Ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era. ApJ, 727, Article No. 129.
[29]  Wright, E.L. (2006) A Cosmology Calculator for the World Wide Web. Publications of the Astronomical Society of the Pacific, 118, 1711-1715.
https://doi.org/10.1086/510102
[30]  Planck Collaboration, Ade, P.A.R., Aghanim, N., Alves, M.I.R., Armitage-Caplan, C., Arnaud, M., et al. (2014) Planck 2013 Results. I. Overview of Products and Scientific Results. A&A, 571, A1.
[31]  Wijers, R.A.M.J. and Paczynski, B. (1994) On the Nature of Gamma-Ray Burst Time Dilations. The Astrophysical Journal, 437, L107.
https://doi.org/10.1086/187694
[32]  Paczynski, B. (1986) Gamma-Ray Bursters at Cosmological Distances. The Astrophysical Journal, 308, L43-L46.
https://doi.org/10.1086/184740
[33]  Lamb, D.Q. (1995) The Distance Scale to Gamma-Ray Bursts. Publications of the Astronomical Society of the Pacific, 107, 1152.
https://doi.org/10.1086/133673
[34]  Narayan, R., Paczynski, B. and Piran, T. (1992) Gamma-Ray Bursts as the Death Throes of Massive Binary Stars. The Astrophysical Journal, 395, L83-L86.
https://doi.org/10.1086/186493
[35]  Fishman, G.J. and Meegan, C.A. (1995) Gamma-Ray Bursts. Annual Review of Astronomy and Astrophysics, 33, 415-458.
https://doi.org/10.1146/annurev.aa.33.090195.002215
[36]  Khadka, N., Luongo, O., Muccino, M. and Ratra, B. (2021) Do Gamma-Ray Burst Measurements Provide a Useful Test of Cosmological Models? Journal of Cosmology and Astroparticle Physics, 9, 42.
https://doi.org/10.1088/1475-7516/2021/09/042
[37]  Laviolette, P.A. (1986) Is the Universe Really Expanding? The Astrophysical Journal, 301, 544-553.
https://doi.org/10.1086/163922
[38]  Amati, L., Frontera, F., Tavani, M., Antonelli, A., Costa, E., et al. (2002) Intrinsic Spectra and Energetics of Bepposax Gamma-Ray Bursts with Known Redshifts. Astronomy & Astrophysics, 390, 81-89.
https://doi.org/10.1051/0004-6361:20020722
[39]  Horváth, I., Hakkila, J. and Bagoly, Z. (2014) Possible Structure in the GRB Sky Distribution at Redshift Two. Astronomy & Astrophysics, 561, L12.
https://doi.org/10.1051/0004-6361/201323020
[40]  Ukwatta, T.N. and Woźniak, P.R. (2015) Investigation of Redshift-and Duration-Dependent Clustering of Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 455, 703-711.
https://doi.org/10.1093/mnras/stv2350
[41]  Xiao, L. and Schaefer, B.E. (2009) Estimating Redshifts for Long Gamma-Ray Bursts. The Astrophysical Journal, 707, 387-403.
https://doi.org/10.1088/0004-637x/707/1/387
[42]  Yonetoku, D., Murakami, T., Nakamura, T., Yamazaki, R., Inoue, A.K. and Ioka, K. (2004) Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. The Astrophysical Journal, 609, 935-951.
https://doi.org/10.1086/421285
[43]  Holanda, R.F.L., Busti, V.C., Lima, F.S. and Alcaniz, J.S. (2017) Probing the Distance-Duality Relation with High-Z Data. Journal of Cosmology and Astroparticle Physics, 9, 39.
https://doi.org/10.1088/1475-7516/2017/09/039
[44]  Yang, T., Holanda, R.F.L. and Hu, B. (2019) Constraints on the Cosmic Distance Duality Relation with Simulated Data of Gravitational Waves from the Einstein Telescope. Astroparticle Physics, 108, 57-62.
https://doi.org/10.1016/j.astropartphys.2019.01.005
[45]  Řípa, J., Mészáros, A. and Ryde, F. (2011) Cosmological Effects on the Observed Flux and Fluence Distributions of Gamma-Ray Bursts. Proceedings of the International Astronomical Union, 7, 385-386.
https://doi.org/10.1017/s1743921312013464
[46]  Zaninetti, L. (2016) The Truncated Lognormal Distribution as a Luminosity Function for SWIFT-BAT Gamma-Ray Bursts. Galaxies, 4, Article No. 57.
https://doi.org/10.3390/galaxies4040057
[47]  Bonetti, L., Ellis, J., Mavromatos, N.E., Sakharov, A.S., Sarkisyan-Grinbaum, E.K. and Spallicci, A.D.A.M. (2017) FRB 121102 Casts New Light on the Photon Mass. Physics Letters B, 768, 326-329.
https://doi.org/10.1016/j.physletb.2017.03.014
[48]  Bonetti, L., Ellis, J., Mavromatos, N.E., Sakharov, A.S., Sarkisyan-Grinbaum, E.K. and Spallicci, A.D.A.M. (2016) Photon Mass Limits from Fast Radio Bursts. Physics Letters B, 757, 548-552.
https://doi.org/10.1016/j.physletb.2016.04.035
[49]  Shao, L. and Zhang, B. (2017) Bayesian Framework to Constrain the Photon Mass with a Catalog of Fast Radio Bursts. Physical Review D, 95, Article ID: 123010.
https://doi.org/10.1103/physrevd.95.123010
[50]  Wu, X., Zhang, S., Gao, H., Wei, J., Zou, Y., Lei, W., et al. (2016) Constraints on the Photon Mass with Fast Radio Bursts. The Astrophysical Journal Letters, 822, L15.
https://doi.org/10.3847/2041-8205/822/1/l15
[51]  Einstein, A. (1917) Kosmologische Betrachtungen zur allgemeinen Relativitatstheorie. Preussische Akademie der Wissenschaften, Sitzungsberichte (Part 1). Document ID: MPIWG: H428RSAN. Einstein’s Seminal Paper on Cosmology Heralding the Genesis of the Scientific Exploration of Physical Cosmology, 142-152.
[52]  Einstein, A. (1915) Grundgedanken der allgemeinen Relativitatstheorie und Anwendung dieser Theorie in der Astronomie (Fundamental Ideas of the General Theory of Relativity and the Application of This Theory in Astronomy). Preussische Akademie der Wissenschaften, Sitzungsberichte (Part 1), 315.
[53]  Einstein, A. (1915) Zur allgemeinen Relativitatstheorie (On the General Theory of Relativity). Preussische Akademie der Wissenschaften, Sitzungsberichte (Part 2), 778-786, 799-801.
[54]  Friedmann, A. (1924) Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik, 21, 326-332.
https://doi.org/10.1007/bf01328280
[55]  Lemaıtre, G. (1933) Über die Krümmung des Raumes. Annales de la Societe Scientifique de Bruxelles, A53, 51-85.
[56]  Robertson, H.P. (1936) Kinematics and World-Structure II. The Astrophysical Journal, 83, 187-201.
https://doi.org/10.1086/143716
[57]  Robertson, H.P. (1936) Kinematics and World-Structure III. The Astrophysical Journal, 83, 257-271.
https://doi.org/10.1086/143726
[58]  Robertson, H.P. (1935) Kinematics and World-Structure. The Astrophysical Journal, 82, 284-301.
https://doi.org/10.1086/143681
[59]  Walker, A.G. (1937) On Milne’s Theory of World-Structure. Proceedings of the London Mathematical Society, s2-42, 90-127.
https://doi.org/10.1112/plms/s2-42.1.90
[60]  Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 168-173.
https://doi.org/10.1073/pnas.15.3.168
[61]  Lemaıtre, G. (1927) Un univers Homog’ene de Masse Constante et de Rayon Croissant Rendant Compte de la Vitesse Radiale des N’ebuleuses Extragalactiques (A Homogeneous Universe of Constant Mass and Increasing Radius Accounting for the Radial Velocity of Extragalactic Nebulae). Annales de la Societe Scientifique de Bruxelles, A47, 49-59.
[62]  Taylor, G.B., Frail, D.A., Berger, E. and Kulkarni, S.R. (2004) The Angular Size and Proper Motion of the Afterglow of GRB 030329. The Astrophysical Journal, 609, L1-L4.
https://doi.org/10.1086/422554
[63]  Eichler, D. and Levinson, A. (2000) A Compact Fireball Model of Gamma-Ray Bursts. The Astrophysical Journal, 529, 146-150.
https://doi.org/10.1086/308245
[64]  Piran, T. (1999) Gamma-Ray Bursts and the Fireball Model. Physics Reports, 314, 575-667.
https://doi.org/10.1016/s0370-1573(98)00127-6
[65]  Fox, D.B. and Mészáros, P. (2006) GRB Fireball Physics: Prompt and Early Emission. New Journal of Physics, 8, 199-199.
https://doi.org/10.1088/1367-2630/8/9/199
[66]  Thompson, C. (1994) A Model of Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 270, 480-498.
https://doi.org/10.1093/mnras/270.3.480
[67]  Pe’er, A. (2015) Physics of Gamma-Ray Bursts Prompt Emission. Advances in Astronomy, 2015, Article ID: 907321.
https://doi.org/10.1155/2015/907321
[68]  Piran, T. (2005) The Physics of Gamma-Ray Bursts. Reviews of Modern Physics, 76, 1143-1210.
https://doi.org/10.1103/revmodphys.76.1143
[69]  Yost, S.A., Harrison, F.A., Sari, R. and Frail, D.A. (2003) A Study of the Afterglows of Four Gamma-Ray Bursts: Constraining the Explosion and Fireball Model. The Astrophysical Journal, 597, 459-473.
https://doi.org/10.1086/378288
[70]  Mészáros, P. (2000) The Fireball Shock Model of Gamma Ray Bursts. AIP Conference Proceedings, 522, 213-225.
https://doi.org/10.1063/1.1291716
[71]  Oates, S.R., Page, M.J., Schady, P., de Pasquale, M., Koch, T.S., Breeveld, A.A., et al. (2009) A Statistical Study of Gamma-Ray Burst Afterglows Measured by the Swift Ultraviolet Optical Telescope. Monthly Notices of the Royal Astronomical Society, 395, 490-503.
https://doi.org/10.1111/j.1365-2966.2009.14544.x
[72]  Yu, Y.-W., Gao, H., Wang, F.-Y. and Zhang, B.-B. (2022) Gamma-Ray Bursts.
[73]  Dado, S., Dar, A. and De Rújula, A. (2022) Critical Tests of Leading Gamma Ray Burst Theories. Universe, 8, Article No. 350.
https://doi.org/10.3390/universe8070350
[74]  Fay, S. (2020) ΛCDM Periodic Cosmology. Monthly Notices of the Royal Astronomical Society, 494, 2183-2190.
https://doi.org/10.1093/mnras/staa940
[75]  Stanek, K.Z., Matheson, T., Garnavich, P.M., Martini, P., Berlind, P., Caldwell, N., et al. (2003) Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. The Astrophysical Journal, 591, L17-L20.
https://doi.org/10.1086/376976
[76]  Hurley, K., Sommer, M., Atteia, J.-L., Boer, M., Cline, T., Cotin, F., et al. (1992) The Solar X-Ray/Cosmic Gamma-Ray Burst Experiment Aboard Ulysses. Astronomy and Astrophysics Supplement Series, 92, 401-410.
[77]  Bloom, J.S., Berger, E., Kulkarni, S.R., Djorgovski, S.G. and Frail, D.A. (2003) The Redshift Determination of GRB 990506 and GRB 000418 with the Echellete Spectrograph Imager on Keck. The Astronomical Journal, 125, 999-1005.
https://doi.org/10.1086/367805
[78]  Klose, S., Stecklum, B., Masetti, N., Pian, E., Palazzi, E., Henden, A.A., et al. (2000) The Very Red Afterglow of GRB 000418: Further Evidence for Dust Extinction in a Gamma-Ray Burst Host Galaxy. The Astrophysical Journal, 545, 271-276.
https://doi.org/10.1086/317816
[79]  Waxman, E. (2004) The Nature of GRB 980425 and the Search for Off-Axis Gamma-Ray Burst Signatures in Nearby Type Ib/c Supernova Emission. The Astrophysical Journal, 602, 886-891.
https://doi.org/10.1086/381230
[80]  Alves, J., Forveille, T., Pentericci, L. and Shore, S. (2020) Planck 2018 Results-VI. Cosmological Parameters. Astronomy & Astrophysics, 641, A6.
https://doi.org/10.1051/0004-6361/202039265
[81]  Parker, B. (1993) The Redshift Controversy. In: The Vindication of the Big Bang: Breakthroughs and Barriers, Springer, 281-300.
[82]  Lian, Y., Cao, S., Biesiada, M., Chen, Y., Zhang, Y. and Guo, W. (2021) Probing Modified Gravity Theories with Multiple Measurements of High-Redshift Quasars. Monthly Notices of the Royal Astronomical Society, 505, 2111-2123.
https://doi.org/10.1093/mnras/stab1373
[83]  Salpeter, E.E. and Hoffman, G.L. (1986) The Galaxy Luminosity Function and the Redshift-Distance Controversy (A Review). Proceedings of the National Academy of Sciences, 83, 3056-3063.
https://doi.org/10.1073/pnas.83.10.3056
[84]  Davis, T. (2019) An Expanding Controversy. Science, 365, 1076-1077.
https://doi.org/10.1126/science.aay1331
[85]  Arp, H. (1967) Peculiar Galaxies and Radio Sources. The Astrophysical Journal, 148, 321-366.
https://doi.org/10.1086/149159
[86]  Arp, H. (1966) Atlas of Peculiar Galaxies. The Astrophysical Journal Supplement Series, 14, 1-20.
https://doi.org/10.1086/190147
[87]  Arp, H. (1981) Quasars near Companion Galaxies. The Astrophysical Journal, 250, 31-42.
https://doi.org/10.1086/159345
[88]  Arp, H.C. (1988) Quasars, Redshifts and Controversies. Cambridge University Press.
[89]  Karlsson, K.G. (1977) On the Existence of Significant Peaks in the Quasar Redshift Distribution. Astronomy and Astrophysics, 58, 237-240.
[90]  Tang, S.M. and Zhang, S.N. (2005) Critical Examinations of QSO Redshift Periodicities and Associations with Galaxies in Sloan Digital Sky Survey Data. The Astrophysical Journal, 633, 41-51.
https://doi.org/10.1086/432754
[91]  Bell, M.B. and McDiarmid, D. (2006) Six Peaks Visible in the Redshift Distribution of 46,400 SDSS Quasars Agree with the Preferred Redshifts Predicted by the Decreasing Intrinsic Redshift Model. The Astrophysical Journal, 648, 140-147.
https://doi.org/10.1086/503792
[92]  Ratcliffe, H. (2010) Anomalous Redshift Data and the Myth of Cosmological Distance. Journal of Cosmology, 4, 693-718.
[93]  Sari, R. and Piran, T. (1995) Hydrodynamic Timescales and Temporal Structure of Gamma-Ray Bursts. The Astrophysical Journal, 455, L143-L146.
https://doi.org/10.1086/309835

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413