全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Salen型配合物的合成与应用:研究进展与展望
Synthesis and Application of Salen-Type Complexes: Research Progress and Prospects

DOI: 10.12677/jocr.2024.122032, PP. 343-352

Keywords: Salen型配合物,合成,应用,研究进展
Salen-Type Complexes
, Synthesis, Applications, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

Salen型配合物作为一种重要的金属有机配合物,在过去的几十年里得到了广泛的研究和应用。由于其独特的结构和化学性质,Salen型配合物在许多领域都展现出显著的应用潜力,尤其是在化学传感、发光和染料降解等方面,Salen型配合物已经取得了重要的研究进展。随着Salen型配合物研究的深入其应用领域将不断拓展,为环境保护、疾病治疗以及可持续发展等领域提供更多的选择。因此,对Salen型配合物的合成方法、结构与性能关系以及应用技术进行系统研究具有重要的理论和实践意义。
Salen-type complexes, as a significant class of metal-organic complexes, have received extensive research and application over the past few decades. Due to their unique structures and chemical properties, Salen-type complexes have demonstrated considerable potential in numerous fields, particularly in chemical sensing, drug delivery, and dye degradation, where they have achieved significant research progress. With the deepening research on Salen-type complexes, their application areas will continue to expand, providing more options for environmental protection, disease treatment, and sustainable development. Therefore, systematic research on the synthesis methods, the relationship between structure and properties, and application technologies of Salen-type complexes is of significant theoretical and practical importance.

References

[1]  Sharma, S.K., Kaur, N., Singh, J., et al. (2016) Salen Decorated Nanostructured ZnO Chemosensor for the Detection of Mercuric Ions (Hg2+). Sensors and Actuators B: Chemical, 232, 712-721.
https://doi.org/10.1016/j.snb.2016.04.017
[2]  Puglisi, R., Pappalardo, A., Gulino, A., et al. (2018) Supramolecular Recognition of a CWA Simulant by Metal-Salen Complexes: The First Multi-Topic Approach. Chemical Communications, 54, 11156-11159.
https://doi.org/10.1039/C8CC06425C
[3]  Ali, S., Ara, T., Danish, M., et al. (2020) Tin(IV) Complexes with Salen Type Schiff Base: Synthesis, Spectroscopic Characterization, Crystal Structure, Antibacterial Screening and Cytotoxicity. Russian Journal of Coordination Chemistry, 45, 889-898.
https://doi.org/10.1134/S1070328419120017
[4]  Ali, S.H., Al-Redha, H.M.A., Sachit, B.A., et al. (2020) Synthesis, Characterization, Theoretical Studies, and Antimicrobial/Antitumor Potencies of Salen and Salen/Imidazole Complexes of Co (II), Ni (II), Cu (II), Cd (II), Al (III) and La (III). Applied Organometallic Chemistry, 34, e5912.
[5]  Shi, R., Zhang, Z. and Luo, F. (2020) N-Doped Graphene-Based CuO/WO3/Cu Composite Material with Performances of Catalytic Decomposition 4-Nitrophenol and Photocatalytic Degradation of Organic Dyes. Inorganic Chemistry Communications, 121, Article ID: 108246.
https://doi.org/10.1016/j.inoche.2020.108246
[6]  Jone Kirubavathy, S., Velmurugan, R., Tamilarasan, B., et al. (2016) Synthesis, Characterization, Single-Crystal XRD, and Biological Evaluation of Nickel(II) Salen Sulfadiazine Complex. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 46, 1751-1758.
https://doi.org/10.1080/15533174.2015.1137038
[7]  Tomczyk, D., Bukowski, W., Bester, K, et al. (2017) The Mechanism of Electropolymerization of Nickel(Ii) Salen Type Complexes. New Journal of Chemistry, 41, 2112-2123.
https://doi.org/10.1039/C6NJ03635J
[8]  McKee, M.L. (2022) Exploring the Reaction Mechanism of C-H Oxidation by Copper-Salen Complexes. The Journal of Physical Chemistry A, 30, 4969-4980.
https://doi.org/10.1021/acs.jpca.2c03344
[9]  Wan, S., Li, M., Zhang, Z., et al. (2020) Reversible Light-Driven Magnetic Switching of Salen Cobalt Complex. Science China Chemistry, 63, 1191-1197.
https://doi.org/10.1007/s11426-020-9786-8
[10]  Consiglio, G., Oliveri, I.P., Failla, S., et al. (2019) On the Aggregation and Sensing Properties of Zinc(II) Schiff-Base Complexes of Salen-Type Ligands. Molecules, 24, Article 2514.
https://doi.org/10.3390/molecules24132514
[11]  Liang, Y., Duan, R.L., Hu, C.Y., et al. (2017) Salen-Iron Complexes: Synthesis, Characterization and Their Reactivity with Lactide. Chinese Journal of Polymer Science, 36, 185-189.
https://doi.org/10.1007/s10118-018-2068-0
[12]  Moncol, J. and Izakovi?, M. (2017) Structurally Diverse and Phase Transitions of Manganese(III) Salen Complexes. Acta Crystallographica Section A: Foundations and Advances, 73, 1240-1240.
https://doi.org/10.1107/S2053273317083346
[13]  Nagasawa, S., Fujiki, S., Sasano, Y., et al. (2021) Chromium-Salen Complex/Nitroxyl Radical Cooperative Catalysis: A Combination for Aerobic Intramolecular Dearomative Coupling of Phenols. The Journal of Organic Chemistry, 86, 6952-6968.
https://doi.org/10.26434/chemrxiv.12924005.v1
[14]  Duan, R., Qu, Z., Pang, X., et al. (2017) Ring‐Opening Polymerization of Lactide Catalyzed by Bimetallic Salen‐Type Titanium Complexes. Chinese Journal of Chemistry, 35, 640-644.
https://doi.org/10.1002/cjoc.201600580
[15]  Bendre, R.S., Tadavi, S.K. and Patil, M.M. (2018) Synthesis, Crystal Structures and Biological Activities of Transition Metal Complexes of a Salen-Type Ligand. Transition Metal Chemistry, 43, 83-89.
https://doi.org/10.1007/s11243-017-0196-y
[16]  Das, L.K., Bhunia, P., Gomila, R.M., et al. (2023) Influence of Non-Covalent Interactions on the Coordination Geometry of Ni(Ii) in Ni(Ii)-M(Ii) Complexes (M = Zn and Hg) with a Salen-Type N2O2 Schiff Base Ligand and Thiocyanate Ion as the Coligand. CrystEngComm, 25, 1393-1402.
https://doi.org/10.1039/D2CE01632J
[17]  Chen, C., Chen, H., Yan, P., et al. (2013) Structure and Electrochemistry of Salen Type Cerium (IV) Complexes Tuned by Multiform Counterions. Inorganica Chimica Acta, 405, 182-187.
https://doi.org/10.1016/j.ica.2013.05.014
[18]  Es-Sounni, B., et al. (2022) Synthesis, Characterization, Antioxidant and Antibacterial Activities of Six Metal Complexes Based Tetradentate Salen Type Bis-Schiff Base. Biointerface Research in Applied Chemistry, 13, Article 333.
https://doi.org/10.33263/BRIAC134.333
[19]  Es-Sounni, B., et al. (2012) Synthesis and Antibacterial Activity of Some Schiff Bases and Their Metal Complexes. Journal of Coordination Chemistry, 65, 141-150.
[20]  Mohamed, N.B., et al. (2010) Antibacterial Activity of Some Schiff Bases and Their Metal(II) Complexes. Journal of Coordination Chemistry, 63, 113-122.
[21]  Elouard, T., et al. (2011) Synthesis and Antimicrobial Activity of Some Schiff Bases and Their Nickel(II) Complexes. Journal of Coordination Chemistry, 64, 107-116.
[22]  Hui, E.Y.L., et al. (2016) Structural Optimization of Coumarin-Based Salen Fe(III) Complexes for the Detection of Pyrophosphate. Analyst, 141, 5366-5375.
[23]  Kumar, S., et al. (2017) Salen Type Schiff Bases and Their Metal Complexes: Application in the Detection of Biological Macromolecules. Journal of Inorganic Organometallic Chemistry, 17, 107-117.
[24]  Wang, Y., et al. (2015) Salen Type Ligands and Their Metal Complexes for Environmental Monitoring: A Review. Journal of Environmental Monitoring, 17, 343-356.
[25]  Baecker, D., Sesli, ?., Knabl, L., et al. (2020) Investigating the Antibacterial Activity of Salen/Salophene Metal Complexes: Induction of Ferroptosis as Part of the Mode of Action. European Journal of Medicinal Chemistry, 209, Article ID: 112907.
https://doi.org/10.1016/j.ejmech.2020.112907
[26]  Pires, A, S., Batista, J., Murtinho, D., et al. (2020) Synthesis, Characterization and Evaluation of the Antibacterial and Antitumor Activity of HalogenatedSalen Copper (II) Complexes Derived from Camphoric Acid. Applied Organometallic Chemistry, 34, e5569.
https://doi.org/10.1002/aoc.5569
[27]  Hui, E.Y.L., Tay, D.W.P., Richard, J.A., et al. (2022) Structural Investigation of Fe(III)-Salen Complexes as “Turn-On” Fluorogenic Probes for Selective Detection of Pyrophosphate Ions. Dyes and Pigments, 207, Article ID: 110708.
https://doi.org/10.1016/j.dyepig.2022.110708
[28]  Li, S., Liu, M., Liu, Q., et al. (2022) Zeolite Encapsulated Cu(II)-Salen Complexes for the Catalytic Degradation of Dyes in a Neutral Condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, Article ID: 129153.
https://doi.org/10.1016/j.colsurfa.2022.129153
[29]  Al-Zaban, M.I., Mahmoud, M.A. and AlHarbi, M.A. (2021) Catalytic Degradation of Methylene Blue Using Silver Nanoparticles Synthesized by Honey. Saudi Journal of Biological Sciences, 28, 2007-2013.
https://doi.org/10.1016/j.sjbs.2021.01.003
[30]  Fan, L., Zhu, H., Wang, K., et al. (2023) Study on the Degradation of Methylene Blue by Cu-Doped SnSe. Molecules, 28, Article 5988.
https://doi.org/10.3390/molecules28165988
[31]  Zubrik, A., Jáger, D., Ma?ingová, E., et al. (2023) Spontaneous Degradation of Methylene Blue Adsorbed on Magnetic Biochars. Scientific Reports, 13, Article No.: 14773.
https://doi.org/10.1038/s41598-023-39976-9
[32]  Fan, Y., Li, J., Ren, Y., et al. (2017) A Ni(Salen)-Based Metal-Organic Framework: Synthesis, Structure, and Catalytic Performance for CO2 Cycloaddition with Epoxides. European Journal of Inorganic Chemistry, 2017, 4982-4989.
https://doi.org/10.1002/ejic.201700871
[33]  Huang, K., Wang, Z. and Wu, D. (2018) Synthesis of Nickel Lysine Salen Complex and Its Catalytic Performance for Styrene Epoxidation. Kinetics and Catalysis, 59, 283-289.
https://doi.org/10.1134/S0023158418030060
[34]  Mierzejewska, M., ??picka, K., Kalecki, J., et al. (2022) Ni(OH)2-Type Nanoparticles Derived from Ni Salen Polymers: Structural Design toward Functional Materials for Improved Electrocatalytic Performance. ACS Applied Materials & Interfaces, 14, 33768-33786.
https://doi.org/10.1021/acsami.2c06147
[35]  Wang, R., Kuwahara, Y., Mori, K., et al. (2020) Improvement of the Water Oxidation Performance of Ti, F Co-Modified Hematite by Surface Modification with a Co(Salen) Molecular Cocatalyst. Journal of Materials Chemistry A, 8, 21613-21622.
https://doi.org/10.1039/D0TA07119F
[36]  Nu?ez-Dallos, N., Posada, A.F. and Hurtado, J. (2017) Coumarin Salen-Based Zinc Complex for Solvent-Free Ring Opening Polymerization of ε-Caprolactone. Tetrahedron Letters, 58, 977-980.
https://doi.org/10.1016/j.tetlet.2017.01.088
[37]  Lee, S.H., Shin, N., Kwak, S.W., et al. (2017) Intriguing Indium-Salen Complexes as Multicolor Luminophores. Inorganic Chemistry, 56, 2621-2626.
https://doi.org/10.1021/acs.inorgchem.6b02797
[38]  Panja, S.K., Dwivedi, N. and Saha, S. (2016) Tuning the Intramolecular Charge Transfer (ICT) Process in Push-Pull Systems: Effect of Nitro Groups. RSC Advances, 6, 105786-105794.
https://doi.org/10.1039/C6RA17521J
[39]  Gao, H., Gao, Y., Wang, C., et al. (2018) Anomalous Effect of Intramolecular Charge Transfer on the Light Emitting Properties of BODIPY. ACS Applied Materials & Interfaces, 10, 14956-14965.
https://doi.org/10.1021/acsami.7b13444

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133