全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

预冻温度对罗非鱼皮胶原纤维海绵结构及性能影响
Effect of Pre-Freezing Temperature on the Structure and Properties of Tilapia Skin Collagen Fiber Sponge

DOI: 10.12677/ojfr.2024.112012, PP. 96-106

Keywords: 罗非鱼,鱼皮,预冻温度,胶原纤维海绵,结构性能
Tilapia
, Fish Skin, Pre-Freezing Temperature, Collagen Fiber Sponge, Structural Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究以罗非鱼皮为原料,探究预冻温度?20℃ (CFS/?20)、?40℃ (CFS/?40)、?60℃ (CFS/?60)、?80℃ (CFS/?80)以及液氮速冻(CFS/LN)对自组装胶原纤维海绵(CFS)结构及性能的影响。扫描电子显微镜(SEM)和X射线衍射图谱(XRD)结果表明,随着预冻温度降低,罗非鱼皮自组装胶原纤维海绵结构致密度逐渐减小,CFS/?20最为致密,且海绵的纤维直径逐渐变大。通过测定胶原纤维海绵的孔隙率、吸水率和保水率,发现CFS/?20、CFS/?40、CFS/?60、CFS/?80、CFS/LN的孔隙率和吸水率逐渐增大。ATR-FTIR结果显示,CFS/?20到CFS/?80于酰胺A带波数略有增加,表明氢键作用减弱。且随着温度降低,压缩强度减小,机械性能下降,抗酶解性减弱。综上所述,预冻温度对罗非鱼皮胶原纤维海绵的结构及性能具有显著影响。
This study investigates the effect of pre-freezing temperatures (?20°C (CFS/?20), ?40°C (CFS/?40), ?60°C (CFS/?60), ?80°C (CFS/?80), and liquid nitrogen flash freezing (CFS/LN)) on the structure and properties of self-assembled collagen fiber sponge (CFS) derived from tilapia skin. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that with decreasing pre- freezing temperature, the structure density of tilapia skin self-assembled collagen fiber sponge gradually decreases, with CFS/?20 being the most dense, and the fiber diameter of the sponge gradually increases. The porosity, water absorption rate, and water retention rate of the collagen fiber sponge increase gradually from CFS/?20 to CFS/?80 and CFS/LN. ATR-FTIR results show a slight increase in the wave number of the amide A band from CFS/?20 to CFS/?80, indicating a weakening of hydrogen bonding. Furthermore, with decreasing temperature, the compressive strength decreases, mechanical properties decline, and resistance to enzymatic degradation weakens. In conclusion, pre-freezing temperature significantly affects the structure and properties of tilapia skin collagen fiber sponge.

References

[1]  李家柔, 倪剑波, 何静怡, 等. 超声辅助酶法提取罗非鱼皮胶原蛋白及其溶解特性[J]. 渔业现代化, 2022, 49(6): 127-134.
[2]  韩玮, 邢瀚文, 施文正, 等. 罗非鱼胶原蛋白4种制备方法比较研究[J]. 河南农业大学学报, 2020, 54(1): 102-108.
[3]  Rahman, M.A. (2019) Collagen of Extracellular Matrix from Marine Invertebrates and Its Medical Applications. Marine Drugs, 17, Article 118.
https://doi.org/10.3390/md17020118
[4]  赵雲, 桂朗, 陈良标. 罗非鱼产业发展现状[J]. 中国水产, 2020(10): 46-48.
[5]  《2019中国渔业统计年鉴》[J]. 世界农业, 2020(3): 2.
[6]  赵志霞, 吴燕燕, 李来好, 等. 我国罗非鱼加工研究现状[J]. 食品工业科技, 2017, 38(9): 363-367, 373.
[7]  Alves, A.P.N.N., Lima Júnior, E.M., Piccolo, N.S., de Miranda, M.J.B., Lima Verde, M.E.Q., Ferreira Júnior, A.E.C., et al. (2018) Study of Tensiometric Properties, Microbiological and Collagen Content in Nile Tilapia Skin Submitted to Different Sterilization Methods. Cell and Tissue Banking, 19, 373-382.
https://doi.org/10.1007/s10561-017-9681-y
[8]  Sun, X., Huang, X., Liao, X. and Shi, B. (2010) Adsorptive Recovery of UO22+ from Aqueous Solutions Using Collagen-Tannin Resin. Journal of Hazardous Materials, 179, 295-302.
https://doi.org/10.1016/j.jhazmat.2010.03.002
[9]  王珠珠, 王利强. 胶原基海绵的研究进展[J]. 皮革与化工, 2018, 35(3): 21-26.
[10]  Yan, X., Chen, Y., Dan, W., Dan, N. and Li, Z. (2022) Bletilla striata Polysaccharide Modified Collagen Fiber Composite Sponge with Rapid Hemostasis Function. Journal of Leather Science and Engineering, 4, Article No. 5.
https://doi.org/10.1186/s42825-022-00079-2
[11]  Pawelec, K.M., Husmann, A., Best, S.M. and Cameron, R.E. (2014) Understanding Anisotropy and Architecture in Ice-Templated Biopolymer Scaffolds. Materials Science and Engineering: C, 37, 141-147.
https://doi.org/10.1016/j.msec.2014.01.009
[12]  An, X., Duan, S., Jiang, Z., Chen, S., Sun, W., Liu, X., et al. (2022) Role of Chlorogenic Acid and Procyanidin in the Modification of Self-Assembled Fibrillar Gel Prepared from Tilapia Collagen. Polymer Degradation and Stability, 206, Article 110177.
https://doi.org/10.1016/j.polymdegradstab.2022.110177
[13]  Feng, X., Zhang, X., Li, S., Zheng, Y., Shi, X., Li, F., et al. (2020) Preparation of Aminated Fish Scale Collagen and Oxidized Sodium Alginate Hybrid Hydrogel for Enhanced Full-Thickness Wound Healing. International Journal of Biological Macromolecules, 164, 626-637.
https://doi.org/10.1016/j.ijbiomac.2020.07.058
[14]  Yu, X., Li, J., Yang, M., Chen, C., Munir, S., You, J., et al. (2021) Role of Epigallocatechin Gallate in Collagen Hydrogels Modification Based on Physicochemical Characterization and Molecular Docking. Food Chemistry, 360, Article 130068.
https://doi.org/10.1016/j.foodchem.2021.130068
[15]  Fernandes-Cunha, G.M., Chen, K.M., Chen, F., Le, P., Han, J.H., Mahajan, L.A., et al. (2020) In Situ-Forming Collagen Hydrogel Crosslinked via Multi-Functional PEG as a Matrix Therapy for Corneal Defects. Scientific Reports, 10, Article No. 16671.
https://doi.org/10.1038/s41598-020-72978-5
[16]  He, L., Lan, W., Wang, Y., Ahmed, S. and Liu, Y. (2019) Extraction and Characterization of Self-Assembled Collagen Isolated from Grass Carp and Crucian Carp. Foods, 8, Article 396.
https://doi.org/10.3390/foods8090396
[17]  赵改名, 王壮壮, 祝超智, 等. 超声波辅助酶法提取牛皮胶原蛋白及其结构表征[J]. 食品工业科技, 2023, 44(9): 190-199.
[18]  Zhang, J., Wei, B., He, L., Xu, C., Xie, D., Paik, K., et al. (2017) Systematic Modulation of Gelation Dynamics of Snakehead (Channa argus) Skin Collagen by Environmental Parameters. Macromolecular Research, 25, 1105-1114.
https://doi.org/10.1007/s13233-017-5149-y
[19]  Oh, S., Nguyen, Q.D., Chung, K. and Lee, H. (2020) Bundling of Collagen Fibrils Using Sodium Sulfate for Biomimetic Cell Culturing. ACS Omega, 5, 3444-3452.
https://doi.org/10.1021/acsomega.9b03704
[20]  Li, H., Liu, B.L., Gao, L.Z. and Chen, H.L. (2004) Studies on Bullfrog Skin Collagen. Food Chemistry, 84, 65-69.
https://doi.org/10.1016/s0308-8146(3)00167-5
[21]  Muyonga, J.H., Cole, C.G.B. and Duodu, K.G. (2004) Characterisation of Acid Soluble Collagen from Skins of Young and Adult Nile Perch (Lates niloticus). Food Chemistry, 85, 81-89.
https://doi.org/10.1016/j.foodchem.2003.06.006
[22]  Wang, J., Pei, X., Liu, H. and Zhou, D. (2018) Extraction and Characterization of Acid-Soluble and Pepsin-Soluble Collagen from Skin of Loach (Misgurnus anguillicaudatus). International Journal of Biological Macromolecules, 106, 544-550.
https://doi.org/10.1016/j.ijbiomac.2017.08.046
[23]  Yan, M., An, X., Duan, S., Jiang, Z., Liu, X., Zhao, X., et al. (2022) A Comparative Study on Cross-Linking of Fibrillar Gel Prepared by Tilapia Collagen and Hyaluronic Acid with EDC/NHS and Genipin. International Journal of Biological Macromolecules, 213, 639-650.
https://doi.org/10.1016/j.ijbiomac.2022.06.006
[24]  Andonegi, M., Heras, K.L., Santos-Vizcaíno, E., Igartua, M., Hernandez, R.M., de la Caba, K., et al. (2020) Structure-Properties Relationship of Chitosan/Collagen Films with Potential for Biomedical Applications. Carbohydrate Polymers, 237, Article 116159.
https://doi.org/10.1016/j.carbpol.2020.116159
[25]  Qu, W., Guo, T., Zhang, X., Jin, Y., Wang, B., Wahia, H., et al. (2022) Preparation of Tuna Skin Collagen-Chitosan Composite Film Improved by Sweep Frequency Pulsed Ultrasound Technology. Ultrasonics Sonochemistry, 82, Article 105880.
https://doi.org/10.1016/j.ultsonch.2021.105880
[26]  Valenzuela-Rojo, R.D., López-Cervantes, J., Sánchez-Machado, D.I., Escárcega-Galaz, A.A. and del Rosario Martínez-Macias, M. (2020) Antibacterial, Mechanical and Physical Properties of Collagen-Chitosan Sponges from Aquatic Source. Sustainable Chemistry and Pharmacy, 15, Article 100218.
https://doi.org/10.1016/j.scp.2020.100218
[27]  Ji, Q., Zhang, H., Zhang, X., Ma, Q., Teng, L. and Qiu, L. (2020) Hydrosoluble Collagen Based Biodegradable Hybrid Hydrogel for Biomedical Scaffold. Journal of Biomaterials Science, Polymer Edition, 31, 2199-2219.
https://doi.org/10.1080/09205063.2020.1796229
[28]  Elango, J., Zhang, J., Bao, B., Palaniyandi, K., Wang, S., Wenhui, W., et al. (2016) Rheological, Biocompatibility and Osteogenesis Assessment of Fish Collagen Scaffold for Bone Tissue Engineering. International Journal of Biological Macromolecules, 91, 51-59.
https://doi.org/10.1016/j.ijbiomac.2016.05.067
[29]  Muthukumar, T., Prabu, P., Ghosh, K. and Sastry, T.P. (2014) Fish Scale Collagen Sponge Incorporated with Macrotyloma uniflorum Plant Extract as a Possible Wound/Burn Dressing Material. Colloids and Surfaces B: Biointerfaces, 113, 207-212.
https://doi.org/10.1016/j.colsurfb.2013.09.019
[30]  Jithendra, P., Rajam, A.M., Kalaivani, T., Mandal, A.B. and Rose, C. (2013) Preparation and Characterization of Aloe Vera Blended Collagen-Chitosan Composite Scaffold for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 5, 7291-7298.
https://doi.org/10.1021/am401637c
[31]  Chandika, P., Ko, S., Oh, G., Heo, S., Nguyen, V., Jeon, Y., et al. (2015) Fish Collagen/Alginate/Chitooligosaccharides Integrated Scaffold for Skin Tissue Regeneration Application. International Journal of Biological Macromolecules, 81, 504-513.
https://doi.org/10.1016/j.ijbiomac.2015.08.038
[32]  李永旭, 郭芳, 吴明丽, 等. 高吸水保水伤口敷料的研究进展[J]. 弹性体, 2022, 32(6): 72-79.
[33]  Zhang, Y., Shen, L., Cheng, Y. and Li, G. (2021) Stable and Biocompatible Fibrillar Hydrogels Based on the Self-Crosslinking between Collagen and Oxidized Chondroitin Sulfate. Polymer Degradation and Stability, 193, Article 109742.
https://doi.org/10.1016/j.polymdegradstab.2021.109742
[34]  Yang, C., Zhang, Y., Tang, P., Zheng, T., Zhang, X., Zhang, Y., et al. (2022) Collagen-Based Hydrogels Cross-Linked via Laccase-Mediated System Incorporated with Fe3+ for Wound Dressing. Colloids and Surfaces B: Biointerfaces, 219, 112825.
https://doi.org/10.1016/j.colsurfb.2022.112825
[35]  Kong, W., Gao, Y., Liu, Q., Dong, L., Guo, L., Fan, H., et al. (2020) The Effects of Chemical Crosslinking Manners on the Physical Properties and Biocompatibility of Collagen Type I/Hyaluronic Acid Composite Hydrogels. International Journal of Biological Macromolecules, 160, 1201-1211.
https://doi.org/10.1016/j.ijbiomac.2020.05.208
[36]  Selvakumar, G. and Lonchin, S. (2020) Fabrication and Characterization of Collagen-Oxidized Pullulan Scaffold for Biomedical Applications. International Journal of Biological Macromolecules, 164, 1592-1599.
https://doi.org/10.1016/j.ijbiomac.2020.07.264

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133