全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高速磁浮列车通过隧道车体压力波特征研究
Research on Pressure Wave Characteristics of High-Speed Maglev Train Passing through Tunnel

DOI: 10.12677/ijm.2024.132012, PP. 108-118

Keywords: 高速磁浮列车,最不利隧道长度,一维流动模型,压力波
High-Speed Maglev Train
, The Critical Tunnel Length, One-Dimensional Flow Model, Pressure Wave

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着磁浮铁路的不断发展,列车以更高的速度在不同长度隧道行驶时会在隧道内形成压力波,使得隧道内出现高或低于隧道大气压的压力脉动,从而使车体表面遭受疲劳破坏,影响使用寿命。本文采用一维可压缩非定常不等熵流动模型特征线法,在论证了研究方法正确性的基础上,分析了单列车通过隧道时车外压力波形成机理,研究了基于车外压力最值的最不利隧道长度以及在该隧道长度下列车车宽的影响特性。研究结果表明:列车驶入隧道瞬间,隧道内流动的空气受到列车壁面的摩擦和热传递,诱发隧道压力波,致使车外观测点的压力缓慢增加。车外最大负压值和最大压力峰峰值随隧道长度的增加呈先增大后减小趋势。宽车体的列车通过最不利隧道长度时,对不同车厢车外观测压力影响较大。本文的研究成果可为车体疲劳强度提供理论数据。
With the continuous development of maglev railway, the pressure wave will be formed in the tunnel when the train travels at a higher speed in different length tunnels, which causes the pressure pulsation of high or lower atmospheric pressure in the tunnel, thus causing fatigue damage to the surface of the car body and affecting the service life. Based on the correctness of the method, the formation mechanism of the external pressure wave when a single train passes through a tunnel is analyzed. The most unfavorable tunnel length based on the maximum value of the external pressure and the influence characteristics of the train width under the tunnel length are studied. The results show that when the train enters the tunnel, the air flowing in the tunnel is subjected to the friction and heat transfer of the train wall, which induces the tunnel pressure wave, resulting in the slow increase of the pressure at the observation point outside the train. With the increase of tunnel length, the maximum negative pressure and the peak value of maximum pressure outside the vehicle first increase and then decrease. When a train with a wide car body passes through the most unfavorable tunnel length, the observed external pressure of different cars is greatly affected. The research results of this paper can provide theoretical data for fatigue strength of vehicle body.

References

[1]  丁叁叁, 刘加利, 陈大伟. 600 km/h高速磁浮交通系统气动设计[J]. 实验流体力学, 2023, 37(1): 1-8.
[2]  田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41.
[3]  Schetz, J.A. (2001) Aerodynamics of High-Speed Trains. Annual Review of Fluid Mechanics, 33, 371-414.
https://doi.org/10.1146/annurev.fluid.33.1.371
[4]  张志超, 杜健, 赵汗冰, 等. 高速磁浮单线隧道车体压力载荷特征[J]. 铁道科学与工程学报, 2021, 18(1): 21-30.
[5]  张志超, 杜健, 杜俊涛, 等. 速度600 km/h单列磁浮列车通过隧道时压力载荷特征研究[J]. 机车电传动, 2020(6): 15-19.
[6]  Yamamoto, A. (1968) Aerodynamics of Train and Tunnel. Proceeding 1st International Conference on Vehicle Mechanics, Detroit, 16-18 July 1968, 151-163.
[7]  William-Louis, M.J.P. and Gregoire, R. (2002) 1-D Calculations of Pressure Fluctuations Outside and Inside a Pressure Sealed High-Speed Trainset Travelling through Tunnels. In: Schulte-Werning, B., Grégoire, R., Malfatti, A. and Matschke, G., Eds., TRANSAEROA European Initiative on Transient Aerodynamics for Railway System Optimisation, Springer, 342-357.
https://doi.org/10.1007/978-3-540-45854-8_27
[8]  Daniele, R, Paolo, S, Claudio, S, et al. (2016) Measurement of the Aerodynamic Features of the ETR1000-V300Zefiro High-Speed Train. 11th World Congress on Railway Research, Milan, May 2016, 1-8.
[9]  Somaschini, C., Argentini, T., Brambilla, E., Rocchi, D., Schito, P. and Tomasini, G. (2020) Full-Scale Experimental Investigation of the Interaction between Trains and Tunnels. Applied Sciences, 10, Article 7189.
https://doi.org/10.3390/app10207189
[10]  Kwon, H.B. (2015) A Study on the Minimum Cross-Sectional Area of High-Speed Railway Tunnel Satisfying Passenger Ear Discomfort Criteria. Journal of Computational Fluids Engineering, 20, 62-69.
https://doi.org/10.6112/kscfe.2015.20.3.62
[11]  Tielkes, T. (2006) Aerodynamic Aspects of Maglev Systems. 19th International Conference on Magnetically Levitated Systems and Linear Drives, Dresden, 13-15 September 2006, 1-9.
[12]  何德华, 陈厚嫦, 张超. 高速列车通过隧道压力波特性试验研究[J]. 铁道机车车辆, 2014, 34(5): 17-20, 124.
[13]  梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120-131.
[14]  梅元贵, 王瑞丽, 许建林, 等. 高速列车进入隧道诱发初始压缩波效应的数值模拟[J]. 计算力学学报, 2016, 33(1): 95-102.
[15]  梅元贵. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
[16]  Saito, S., Iida, M. and Kajiyama, H. (2011) Numerical Simulation of 1-D Unsteady Compressible Flow in Railway Tunnels. Journal of Environment and Engineering, 6, 723-738.
https://doi.org/10.1299/jee.6.723
[17]  张芯茹. 高速磁浮隧道压力波特性及隧道净空面积研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2021.
[18]  Yang, M., Zhong, S., Zhang, L., Qian, B., Wang, T., Zhou, D., et al. (2022) 600 Km/h Moving Model Rig for High-Speed Train Aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics, 227, Article ID: 105063.
https://doi.org/10.1016/j.jweia.2022.105063
[19]  iTeh Standards (2021) EN14067-5: 2021. Railway applications Aerodynamics Part5: Requirements and Test Procedures for Aerodynamics in Tunnels.
[20]  贾永兴. 高速列车隧道压力波效应数值模拟研究[D]: [博士学位论文]. 兰州: 兰州交通大学, 2020.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133