全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氧化铈纳米粒子锚定介孔生物活性玻璃复合粉体材料的制备与抗氧化性能表征
Preparation and Antioxidant Characterization of Mesoporous Bioactive Glass Composite Powders Anchored by Cerium Oxide Nanoparticles

DOI: 10.12677/jocr.2024.122022, PP. 249-258

Keywords: 氧化铈,介孔生物活性玻璃,氧化应激,抗氧化,骨组织工程
Cerium Oxide
, Mesoporous Bioactive Glass, Oxidative Stress, Antioxidant, Bone Tissue Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化铈纳米颗粒(CNPs)因其Ce3+/Ce4+的可逆转换反应,能有效应对氧化应激,在生物医药领域展现出应用潜力。为抵御骨修复过程中氧化应激损害,本文通过水热法成功制备了平均粒径3~5 nm、单分散的CNPs,并利用酮缩硫醇(thioketals, TK)将其牢固地锚定在介孔生物活性玻璃(MBG)粉体材料表面,获得具有抗氧化应激性能的CNPs@MBG复合粉体材料。使用H2O2溶液来模拟活性氧(Reactive Oxygen Species, ROS)环境,对CNPs@MBG复合粉体的抗氧化特性进行了探讨。实验结果显示,CNPs@MBG复合粉体展现出优良的H2O2分解性能,有效降低了ROS水平,避免了氧化应激。随着CNPs锚定含量的增加,抗氧化效果更为显著。
Cerium oxide nanoparticles (CNPs) can effectively mitigate oxidative stress through the reversible Ce3+/Ce4+ conversion reaction, showing their potential application in the field of biomedicine. In order to resist oxidative stress during bone repair, monodisperse CNPs with an average particle size of 3-5 nm were successfully synthesized using a hydrothermal method in this study. The CNPs were then anchored onto the surface of mesoporous bioactive glass (MBG) powder materials via a thioketal (TK) linker, which thereby formed CNPs@MBG composite powders with antioxidant properties. The antioxidant capabilities of the CNPs@MBG composite powders were evaluated by subjecting them to an H2O2 solution to simulate a reactive oxygen species (ROS) environment. The results demonstrated that the CNPs@MBG performed high capabilities in decomposing H2O2, reducing ROS levels and preventing oxidative stress. Furthermore, as the anchoring content of CNPs increased, the antioxidant effect became more pronounced.

References

[1]  Lee, D.H., Lim, B.S., Lee, Y.K., et al. (2006) Effects of Hydrogen Peroxide (H2O2) on Alkaline Phosphatase Activity and Matrix Mineralization of Odontoblast and Osteoblast Cell Lines. Cell Biology and Toxicology, 22, 39-46.
https://doi.org/10.1007/s10565-006-0018-z
[2]  Dulany, K., Hepburn, K., Goins, A., et al. (2020) In Vitro and in Vivo Biocompatibility Assessment of Free Radical Scavenging Nanocomposite Scaffolds for Bone Tissue Regeneration. Journal of Biomedical Materials Research Part A, 108, 301-315.
https://doi.org/10.1002/jbm.a.36816
[3]  Lv, G., Yan, C., Sun, L., et al. (2013) The Application of Nanoceria in the Bio-Antioxidation. Scientia Sinica Chimica, 43, 1309-1321.
https://doi.org/10.1360/032012-536
[4]  Roy, W., Tarnuzzer, J.C., Swanand, P. and Sudipta, S. (2005) Vacancy Engineered Ceria Nanostructures for Protection from Radiation-Induced Cellular Damage. Nano Letters, 5, 2573-2577.
https://doi.org/10.1021/nl052024f
[5]  Hirst, S.M., Karakoti, A.S., Tyler, R.D., et al. (2009) Anti-Inflammatory Properties of Cerium Oxide Nanoparticles. Small, 5, 2848-2856.
https://doi.org/10.1002/smll.200901048
[6]  Celardo, I., Pedersen, J.Z., Traversa, E., et al. (2011) Pharmacological Potential of Cerium Oxide Nanoparticles. Nanoscale, 3, 1411-1420.
https://doi.org/10.1039/c0nr00875c
[7]  Li, M., Shi, P., Xu, C., et al. (2013) Cerium Oxide Caged Metal Chelator: Anti-Aggregation and Anti-Oxidation Integrated H2O2-Responsive Controlled Drug Release for Potential Alzheimer’s Disease Treatment. Chemical Science, 4, 2536-2542.
https://doi.org/10.1039/c3sc50697e
[8]  Vassie, J.A., Whitelock, J.M. and Lord, M.S. (2018) Targeted Delivery and Redox Activity of Folic Acid-Functionalized Nanoceria in Tumor Cells. Molecular Pharmaceutics, 15, 994-1004.
https://doi.org/10.1021/acs.molpharmaceut.7b00920
[9]  Xu, C., Lin, Y., Wang, J., et al. (2013) Nanoceria-Triggered Synergetic Drug Release Based on CeO2-Capped Mesoporous Silica Host-Guest Interactions and Switchable Enzymatic Activity and Cellular Effects of CeO2. Advanced Healthcare Materials, 2, 1591-1599.
https://doi.org/10.1002/adhm.201200464
[10]  Karakoti, A.S., Tsigkou, O., Yue, S., et al. (2010) Rare Earth Oxides as Nanoadditives in 3-D Nanocomposite Scaffolds for Bone Regeneration. Journal of Materials Chemistry, 20, 8912-8919.
https://doi.org/10.1039/c0jm01072c
[11]  Mandoli, C., Pagliari, F., Pagliari, S., et al. (2010) Stem Cell Aligned Growth Induced by CeO2 Nanoparticles in PLGA Scaffolds with Improved Bioactivity for Regenerative Medicine. Advanced Functional Materials, 20, 1617-1624.
https://doi.org/10.1002/adfm.200902363
[12]  Zhang, M., Zhang, C., Zhai, X., et al. (2019) Antibacterial Mechanism and Activity of Cerium Oxide Nanoparticles. Science China Materials, 62, 1727-1739.
https://doi.org/10.1007/s40843-019-9471-7
[13]  Nicolini, V., Malavasi, G., Lusvardi, G., et al. (2019) Mesoporous Bioactive Glasses Doped with Cerium: Investigation over Enzymatic-Like Mimetic Activities and Bioactivity. Ceramics International, 45, 20910-20920.
https://doi.org/10.1016/j.ceramint.2019.07.080
[14]  Perez, J.M., Asati, A., Nath, S., et al. (2008) Synthesis of Biocompatible Dextran-Coated Nanoceria with PH-Dependent Antioxidant Properties. Small, 4, 552-556.
https://doi.org/10.1002/smll.200700824
[15]  Wang, Z., Shen, X., Gao, X., et al. (2019) Simultaneous Enzyme Mimicking and Chemical Reduction Mechanisms for Nanoceria as a Bio-Antioxidant: A Catalytic Model Bridging Computations and Experiments for Nanozymes. Nanoscale, 11, 13289-13299.
https://doi.org/10.1039/C9NR03473K
[16]  Charbgoo, F., Ahmad, M. and Darroudi, M. (2017) Cerium Oxide Nanoparticles: Green Synthesis and Biological Applications. International Journal of Nanomedicine, 12, 1401-1413.
https://doi.org/10.2147/IJN.S124855
[17]  Zheng, Q., Fang, Y., Zeng, L., et al. (2019) Cytocompatible Cerium Oxide-Mediated Antioxidative Stress in Inhibiting Ocular Inflammation-Associated Corneal Neovascularization. Journal of Materials Chemistry B, 7, 6759-6769.
https://doi.org/10.1039/C9TB01066A
[18]  Koons, G.L., Diba, M. and Mikos, A.G. (2020) Materials Design for Bone-Tissue Engineering. Nature Reviews Materials, 5, 584-603.
https://doi.org/10.1038/s41578-020-0204-2
[19]  Masui, T., Hirai, H., Imanaka, N., et al. (2002) Synthesis of Cerium Oxide Nanoparticles by Hydrothermal Crystallization with Citric Acid. Journal of Materials Science Letters, 21, 489-491.
https://doi.org/10.1023/A:1015342925372
[20]  Guo, J., Gao, X., Su, L., et al. (2011) Aptamer-Functionalized PEG-PLGA Nanoparticles for Enhanced Anti-Glioma Drug Delivery. Biomaterials, 32, 8010-8020.
https://doi.org/10.1016/j.biomaterials.2011.07.004
[21]  Yang, Y., Yang, S., Wang, Y., et al. (2016) Anti-Infective Efficacy, Cytocompatibility and Biocompatibility of a 3D-Printed Osteoconductive Composite Scaffold Functionalized with Quaternized Chitosan. Acta Biomaterialia, 46, 112-128.
https://doi.org/10.1016/j.actbio.2016.09.035
[22]  Shuai, C., Xu, Y., Feng, P., et al. (2019) Antibacterial Polymer Scaffold Based on Mesoporous Bioactive Glass Loaded with in Situ Grown Silver. Chemical Engineering Journal, 374, 304-315.
https://doi.org/10.1016/j.cej.2019.03.273
[23]  Hill, R.J. and Howard, C.J. (1987) Quantitative Phase Analysis from Neutron Powder Diffraction Data Using the Rietveld Method. Journal of Applied Crystallography, 20, 467-474.
https://doi.org/10.1107/S0021889887086199
[24]  Bish, D.L. and Howard, S.A. (1988) Quantitative Phase Analysis Using the Rietveld Method. Journal of Applied Crystallography, 21, 86-91.
https://doi.org/10.1107/S0021889887009415

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413