全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

β,γ-不饱和-α-酮酸酯在有机合成中的应用研究进展
Research Progress in the Organic Synthesis of β,γ-Unsaturated-α-Ketoesters

DOI: 10.12677/jocr.2024.122028, PP. 306-317

Keywords: β,γ-不饱和-α-酮酸酯,合成子,有机中间体
β
,γ-Unsaturated-α-Ketoesters, Building Blocks, Organic Intermediates

Full-Text   Cite this paper   Add to My Lib

Abstract:

β,γ-不饱和-α-酮酸酯是一类具有特殊共轭结构的有机中间体,其在有机合成中可以充当C1、C2、C3和C4合成子,可以用于合成具有手性结构或者非手性结构的化合物,因此,β,γ-不饱和-α-酮酸酯已成为现代有机合成中极具吸引力且用途广泛的合成子。本文重点介绍了β,γ-不饱和-α-酮酸酯作为不同合成子在有机合成中的应用,如不对称1,4-加成反应、[2 + 3]环加成反应、[3 + 2]环加成反应以及构建螺环化合物和六元杂环化合物的应用。
β,γ-Unsaturated-α-ketoesters are a class of organic intermediates with a unique conjugated structure, which can serve as C1, C2, C3, and C4 synthons in organic synthesis, and can be used to synthesize compounds with chiral or non-chiral structures. Therefore, β,γ-unsaturated-α-ketoesters have become highly attractive and versatile building blocks in modern organic chemistry. This review focuses on introducing β,γ-Unsaturation-α- the application of ketone esters as different synthons in organic synthesis, such as asymmetric 1,4-addition reactions, [2 + 3] cycloaddition reactions, [3 + 2] cycloaddition reactions, as well as the construction of spirocyclic compounds and hexagonal heterocyclic compounds.

References

[1]  Yu, S., Cai, Q., Wang, C., Hou, J., Liang, J., Jiao, Z., et al. (2023) Enantioselective Friedel—Crafts Alkylation of Indoles with Β, γ-Unsaturated α-Ketoesters Catalyzed by New Copper(I) Catalysts. The Journal of Organic Chemistry, 88, 3046-3053.
https://doi.org/10.1021/acs.joc.2c02749
[2]  Sahoo, S.C., Maity, R. and Pan, S.C. (2019) DBU-Mediated Addition of α-Nitroketones to α-Cyano-Enones and α, β-Unsaturated α-Ketoesters: Synthesis of Dihydrofurans and Conjugated Dienes. ACS Omega, 4, 2792-2803.
https://doi.org/10.1021/acsomega.8b03651
[3]  Lv, X., Zhao, W., Chen, Y., Wan, S. and Liu, Y. (2019) Organocatalytic Asymmetric Synthesis of Both Cis-and Trans-Configured Pyrano[2,3-b]Chromenes via Different Dehydration Pathways. Organic Chemistry Frontiers, 6, 1972-1976.
https://doi.org/10.1039/c9qo00366e
[4]  Chen, J., Xu, M., Zhang, J., Sun, B., Hu, J., Yu, J., et al. (2020) Modular Chiral Bisoxalamide-Copper-Catalyzed Asymmetric Oxo-Diels-Alder Reaction: Carbonyl Coordination for High Enantio-and Diastereocontrols. ACS Catalysis, 10, 3556-3563.
https://doi.org/10.1021/acscatal.9b05606
[5]  Fan, W., Yang, X., Lv, H., Wang, X. and Wang, Z. (2020) Chiral Binaphthyl Box-Copper-Catalyzed Enantioselective Tandem Michael-Ketalization Annulations for Optically Active Aryl and Heteroaryl Fused Bicyclicnonanes. Organic Letters, 22, 3936-3941.
https://doi.org/10.1021/acs.orglett.0c01221
[6]  Mo, Y., Zhang, X., Yao, Y., Duan, C., Ye, L., Shi, Z., et al. (2021) Construction of Chiral Isotetronic Acid-Fused Thiochromane via Doubly Annulative Strategy. The Journal of Organic Chemistry, 86, 4448-4456.
https://doi.org/10.1021/acs.joc.0c02878
[7]  Tokoroyama, T. (2010) Cheminform Abstract: Discovery of the Michael Reaction. ChemInform, 41.
https://doi.org/10.1002/chin.201027218
[8]  Dalko, P.I. (2013) Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, 3 Volume Set. John Wiley & Sons., Hoboken.
[9]  Ballini, R., Bosica, G., Fiorini, D., Palmieri, A. and Petrini, M. (2005) Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results. Chemical Reviews, 105, 933-972.
https://doi.org/10.1021/cr040602r
[10]  Malerich, J.P., Hagihara, K. and Rawal, V.H. (2008) Chiral Squaramide Derivatives Are Excellent Hydrogen Bond Donor Catalysts. Journal of the American Chemical Society, 130, 14416-14417.
https://doi.org/10.1021/ja805693p
[11]  Fofana, M., Dudognon, Y., Bertrand, L., Constantieux, T., Rodriguez, J., Ndiaye, I., et al. (2020) Enantioselective Organocatalyzed Michael Additions of Nitroalkanes to 4-Arylidenedihydrofuran-2,3-Diones and 4-Arylidenepyrrolidine-2,3-Diones. European Journal of Organic Chemistry, 2020, 3486-3490.
https://doi.org/10.1002/ejoc.202000460
[12]  Collados, J.F., Solà, R., Harutyunyan, S.R. and Maciá, B. (2016) Catalytic Synthesis of Enantiopure Chiral Alcohols via Addition of Grignard Reagents to Carbonyl Compounds. ACS Catalysis, 6, 1952-1970.
https://doi.org/10.1021/acscatal.5b02832
[13]  Wei, A., Nie, J., Zheng, Y. and Ma, J. (2015) Ni-Catalyzed Highly Chemo-, Regio-, and Enantioselective Decarboxylative Aldol Reaction of β,γ-Unsaturated α-Ketoesters with β-Ketoacids. The Journal of Organic Chemistry, 80, 3766-3776.
https://doi.org/10.1021/jo502741z
[14]  Li, K., Sun, X., Li, L., Zha, Z., Zhang, F. and Wang, Z. (2020) Stereoselective Copper-Catalyzed Direct Aldol Reaction of β,γ-Unsaturated α-Ketoesters with Coumaran-3-Ones. ChemistryA European Journal, 27, 581-584.
https://doi.org/10.1002/chem.202003510
[15]  Ohshima, T., Morisaki, K., Morimoto, H. and Mashima, K. (2017) Direct Enantioselective Alkynylation of α-Ketoesters and α-Ketiminoesters Catalyzed by [Bis(Oxazoline)Phenyl]Rhodium(III) Complexes. Heterocycles, 95, 637-661.
[16]  Deng, R., Han, T., Gao, X., Yang, Y. and Mei, G. (2022) Further Developments of β,γ-Unsaturated α-Ketoesters as Versatile Synthons in Asymmetric Catalysis. iScience, 25, Article 103913.
https://doi.org/10.1016/j.isci.2022.103913
[17]  Gan, Z., Cui, D., Zhang, H., Feng, Y., Huang, L., Gui, Y., et al. (2022) Trityl Cation-Catalyzed Hosomi-Sakurai Reaction of Allylsilane with β,γ-Unsaturated α-Ketoester to Form γ,γ-Disubstituted α-Ketoesters. Molecules, 27, Article 4730.
https://doi.org/10.3390/molecules27154730
[18]  Rubin, M., Rubina, M. and Gevorgyan, V. (2007) Transition Metal Chemistry of Cyclopropenes and Cyclopropanes. Chemical Reviews, 107, 3117-3179.
https://doi.org/10.1021/cr050988l
[19]  Liu, X., Zhang, Y., Li, L., Tan, L., Huang, Y., Ma, A., et al. (2022) Palladium-Catalyzed Nucleophilic Reaction of Alkylidenecyclopropanes with β,γ-Unsaturated α-Ketoesters: Ligand-Controlled Divergent Synthesis. Organic Letters, 24, 6692-6696.
https://doi.org/10.1021/acs.orglett.2c02839
[20]  Li, N., Lu, W., Gu, W., Li, K., Li, J., Lu, Y., et al. (2022) Construction of Spirocyclic Oxindole Derivatives by Copper-Catalyzed Enantioselective Michael/Hemiketalization in Aqueous Media. Chemical Communications, 58, 10957-10960.
https://doi.org/10.1039/d2cc04370j
[21]  Yu, S., Cai, Q., Li, J., Yu, T., Liang, J., Jiao, Z., et al. (2023) Enantioselective Michael Addition of Malonates to β,γ-Unsaturated α-Ketoesters Catalysed by Cu(II) Complexes Bearing Binaphthyl-Proline Hybrid Ligands. Organic & Biomolecular Chemistry, 21, 1764-1770.
https://doi.org/10.1039/d2ob02305a
[22]  Wang, L., Lv, J., Li, S. and Luo, S. (2017) Divergent Coupling of β,γ-Unsaturated α-Ketoesters with Simple Olefins: Vinylation and [2+2] Cycloaddition. Organic Letters, 19, 3366-3369.
https://doi.org/10.1021/acs.orglett.7b01291
[23]  Mowbray, C.E., Burt, C., Corbau, R., Perros, M., Tran, I., Stupple, P.A., et al. (2009) Pyrazole NNRTIs 1: Design and Initial Optimisation of a Novel Template. Bioorganic & Medicinal Chemistry Letters, 19, 5599-5602.
https://doi.org/10.1016/j.bmcl.2009.08.039
[24]  Thomas, J.B., Giddings, A.M., Wiethe, R.W., Olepu, S., Warner, K.R., Sarret, P., et al. (2014) Identification of 1-({[1-(4-Fluorophenyl)-5-(2-Methoxyphenyl)-1H-Pyrazol-3-yl]Carbonyl}Amino)Cyclohexane Carboxylic Acid as a Selective Nonpeptide Neurotensin Receptor Type 2 Compound. Journal of Medicinal Chemistry, 57, 5318-5332.
https://doi.org/10.1021/jm5003843
[25]  Casimiro-Garcia, A., Piotrowski, D.W., Ambler, C., Arhancet, G.B., Banker, M.E., Banks, T., et al. (2014) Identification of (R)-6-(1-(4-Cyano-3-Methylphenyl)-5-Cyclopentyl-4,5-Dihydro-1H-Pyrazol-3-yl)-2-Methoxynicotinic Acid, a Highly Potent and Selective Nonsteroidal Mineralocorticoid Receptor Antagonist. Journal of Medicinal Chemistry, 57, 4273-4288.
https://doi.org/10.1021/jm500206r
[26]  Zhang, J., Pan, H. and Liu, T. (2018) Facile Strategy for the Preparation of Pyrazoline Derivatives through Phosphine-Promoted [2+3] Cycloaddition of Dialkyl Azodicarboxylates with β,γ-Unsaturated α-Keto Esters. Synthetic Communications, 48, 1085-1091.
https://doi.org/10.1080/00397911.2018.1435819
[27]  Hashimoto, T. and Maruoka, K. (2015) Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. Chemical Reviews, 115, 5366-5412.
https://doi.org/10.1021/cr5007182
[28]  Chen, Y., Cui, B., Wang, Y., Han, W., Wan, N., Bai, M., et al. (2018) Asymmetric [3+2] Cycloaddition Reaction of Isatin-Derived MBH Carbonates with 3-Methyleneoxindoles: Enantioselective Synthesis of 3,3′-Cyclopentenyldispiroox-indoles Incorporating Two Adjacent Quaternary Spirostereocenters. The Journal of Organic Chemistry, 83, 10465-10475.
https://doi.org/10.1021/acs.joc.8b01506
[29]  Chen, Y., Cui, B., Bai, M., Han, W., Wan, N. and Chen, Y. (2019) Synthesis of Chiral Spiro-Cyclopentene/Cyclopen-tadiene-Oxindoles through an Asymmetric [3+2] Cycloaddition of Isatin-Derived MBH Carbonates and β,γ-Unsaturated α-Keto Esters. Tetrahedron, 75, 2971-2979.
https://doi.org/10.1016/j.tet.2019.04.040
[30]  Peňa?ka, T., Palchykov, V., Rakovsky, E., Addová, G. and ?ebesta, R. (2021) Stereoselective Organocatalytic Construction of Spiro Oxindole Pyrrolidines Using Unsaturated α-Ketoesters and α-Ketoamides. European Journal of Organic Chemistry, 2021, 1693-1703.
https://doi.org/10.1002/ejoc.202100022
[31]  Ong, C.W., Lai, M.C., Jan, J.J. and Chang, Y.A. (2002) Pyrrolizine and Indolizine Derivatives from 1,6-Dioxo-2,4-Diene by Inter-and Intramolecular Ring Closure. Heterocycles, 33, 125.
https://doi.org/10.1002/chin.200245125
[32]  Yang, R., Chen, Y., Pan, L., Yang, Y., Zheng, Q., Hu, Y., et al. (2018) Design, Synthesis and Structure-Activity Relationship Study of Novel Naphthoindolizine and Indolizinoquinoline-5,12-Dione Derivatives as IDO1 Inhibitors. Bioorganic & Medicinal Chemistry, 26, 4886-4897.
https://doi.org/10.1016/j.bmc.2018.08.028
[33]  Zhang, Y., Li, L., Ma, A., Wang, W. and Peng, J. (2022) Base-Promoted [4+2] Annulation of Pyrrole-2-Carbaldehyde Derivatives with β,γ-Unsaturated α-Ketoesters: Syntheses of 5,6-Dihydroindolizines. Organic & Biomolecular Chemistry, 20, 8633-8637.
https://doi.org/10.1039/d2ob01903e
[34]  Zhu, Y.I. and Stiller, M.J. (2001) Dapsone and Sulfones in Dermatology: Overview and Update. Journal of the American Academy of Dermatology, 45, 420-434.
https://doi.org/10.1067/mjd.2001.114733
[35]  Fowler, J.S., Logan, J., Azzaro, A.J., Fielding, R.M., Zhu, W., Poshusta, A.K., et al. (2009) Reversible Inhibitors of Monoamine Oxidase-A (RIMAs): Robust, Reversible Inhibition of Human Brain MAO-A by Cx157. Neuropsychopharmacology, 35, 623-631.
https://doi.org/10.1038/npp.2009.167
[36]  Madhava, G., Ramana, K.V., Sudhana, S.M., Rao, D.S., Kumar, K.H., Lokanatha, V., et al. (2017) Aryl/Heteroaryl Substituted Celecoxib Derivatives as COX-2 Inhibitors: Synthesis, Anti-Inflammatory Activity and Molecular Docking Studies. Medicinal Chemistry, 13, 484-497.
https://doi.org/10.2174/1573406413666170221093740
[37]  Tang, X., Tong, L., Liang, H., Liang, J., Zou, Y., Zhang, X., et al. (2018) Facile Synthesis of Substituted Diaryl Sulfones via a [3+3] Benzannulation Strategy. Organic & Biomolecular Chemistry, 16, 3560-3563.
https://doi.org/10.1039/c8ob00662h
[38]  Xu, J., Hu, L., Hu, H., Ge, S., Liu, X. and Feng, X. (2019) Enantioselective Vinylogous Michael-Aldol Reaction to Synthesize Spirocyclohexene Pyrazolones in Aqueous Media. Organic Letters, 21, 1632-1636.
https://doi.org/10.1021/acs.orglett.9b00168
[39]  Zhang, S., Greenhalgh, M.D., Slawin, A.M.Z. and Smith, A.D. (2020) Tandem Sequential Catalytic Enantioselective Synthesis of Highly-Functionalised Tetrahydroindolizine Derivatives. Chemical Science, 11, 3885-3892.
https://doi.org/10.1039/d0sc00432d
[40]  Mukherjee, S., Yang, J.W., Hoffmann, S. and List, B. (2007) Asymmetric Enamine Catalysis. Chemical Reviews, 107, 5471-5569.
https://doi.org/10.1021/cr0684016
[41]  Bertelsen, S. and J?rgensen, K.A. (2009) Organocatalysis—After the Gold Rush. Chemical Society Reviews, 38, 2178-2189.
https://doi.org/10.1039/b903816g
[42]  Fernando, E.H.N., Cortes Vazquez, J., Davis, J., Luo, W., Nesterov, V.N. and Wang, H. (2021) Can Primary Arylamines Form Enamine? Evidence, α-Enaminone, and [3+3] Cycloaddition Reaction. The Journal of Organic Chemistry, 86, 14617-14626.
https://doi.org/10.1021/acs.joc.1c01462
[43]  Pei, C., Wu, L., Lian, Z. and Shi, M. (2012) Dabco-Catalyzed Regioselective Cyclization Reactions of β,γ-Unsaturated α-Ketophosphonates or β,γ-Unsaturated α-Ketoesters with Allenic Esters. Organic & Biomolecular Chemistry, 10, 171-180.
https://doi.org/10.1039/c1ob06507f
[44]  Kilroy, T.G., O’Sullivan, T.P. and Guiry, P.J. (2005) Synthesis of Dihydrofurans Substituted in the 2-Position. European Journal of Organic Chemistry, 2005, 4929-4949.
https://doi.org/10.1002/ejoc.200500489
[45]  Cheng, Y., Han, Y. and Li, P. (2017) Organocatalytic Enantioselective [1+4] Annulation of Morita-Baylis-Hillman Carbonates with Electron-Deficient Olefins: Access to Chiral 2,3-Dihydrofuran Derivatives. Organic Letters, 19, 4774-4777.
https://doi.org/10.1021/acs.orglett.7b02144
[46]  Liu, L. and Zhang, J. (2016) Gold-Catalyzed Transformations of α-Diazocarbonyl Compounds: Selectivity and Diversity. Chemical Society Reviews, 45, 506-516.
https://doi.org/10.1039/c5cs00821b
[47]  Zhang, S., Wei, F., Song, C., Jia, J. and Xu, Z. (2014) Recent Advances of the Combination of Au/Acid Catalysis. Chinese Journal of Chemistry, 32, 937-956.
https://doi.org/10.1002/cjoc.201400428
[48]  Gong, J., Wan, Q. and Kang, Q. (2018) Gold(I)/Chiral Rh(III) Lewis Acid Relay Catalysis Enables Asymmetric Synthesis of Spiroketals and Spiroaminals. Advanced Synthesis & Catalysis, 360, 4031-4036.
https://doi.org/10.1002/adsc.201800492
[49]  Xu, C., Wang, K., Li, D., Lin, L. and Feng, X. (2019) Asymmetric Synthesis of Oxa-bridged Oxazocines through a Catalytic RhII/znII Relay [4+3] Cycloaddition Reaction. Angewandte Chemie International Edition, 58, 18438-18442.
https://doi.org/10.1002/anie.201910898
[50]  Flematti, G.R., Scaffidi, A., Goddard-Borger, E.D., Heath, C.H., Nelson, D.C., Commander, L.E., et al. (2010) Structure—Activity Relationship of Karrikin Germination Stimulants. Journal of Agricultural and Food Chemistry, 58, 8612-8617.
https://doi.org/10.1021/jf101690a
[51]  Khafagy, M.M., Abd El-Wahab, A.H.F., Eid, F.A. and El-Agrody, A.M. (2002) Synthesis of Halogen Derivatives of Benzo[h]Chromene and Benzo[a]Anthracene with Promising Antimicrobial Activities. Il Farmaco, 57, 715-722.
https://doi.org/10.1016/s0014-827x(02)01263-6
[52]  Duan, D., Qiu, H., Tang, M., Song, R., Si, W., Yang, D., et al. (2022) HfCl4-Catalyzed [4+2] Cycloaddition of β,γ-Unsaturated α-Keto Esters with Alkynes. The Journal of Organic Chemistry, 87, 5188-5198.
https://doi.org/10.1021/acs.joc.2c00007

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413