全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of the Life Cycle Analysis for Plastic Waste Pyrolysis

DOI: 10.4236/ojpchem.2024.143006, PP. 113-145

Keywords: Plastics, Thermal Recycling, Carbon Dioxide Emissions, Life Cycle Evaluation, Pyrolysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pyrolysis is a rapidly expanding chemical-based recyclable method that complements physical recycling. It avoids improper disposal of post-consumer polymers and mitigates the ecological problems linked to the production of new plastic. Nevertheless, while there is a consensus that pyrolysis might be a crucial technology in the years to come, more discussions are needed to address the challenges related to scaling up, the long-term sustainability of the process, and additional variables essential to the advancement of the green economy. Herein, it emphasizes knowledge gaps and methodological issues in current Life Cycle Assessment (LCA), underlining the need for standardized techniques and updated data to support robust decision-making for adopting pyrolysis technologies in waste management strategies. For this purpose, this study reviews the LCAs of pyrolytic processes, encompassing the complete life cycle, from feedstock collection to end-product distribution, including elements such as energy consumption, greenhouse gas emissions, and waste creation. Hence, we evaluate diverse pyrolysis processes, including slow, rapid, and catalytic pyrolysis, emphasizing their distinct efficiency and environmental footprints. Furthermore, we evaluate the impact of feedstock composition, process parameters, and scale of operation on the overall sustainability of pyrolysis-based plastic waste treatment by integrating results from current literature and identifying essential research needs. Therefore, this paper argues that existing LCA studies need more coherence and accuracy. It follows a thorough evaluation of previous research and suggests new insights into methodologies and restrictions.

References

[1]  Ali, S.S., Elsamahy, T., Al-Tohamy, R., Zhu, D., Mahmoud, Y.A.G., Koutra, E., et al. (2021) Plastic Wastes Biodegradation: Mechanisms, Challenges and Future Prospects. Science of the Total Environment, 780, 146590.
https://doi.org/10.1016/j.scitotenv.2021.146590
[2]  PlasticsEurope (2019) Plastics—The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data. PlasticEurope
https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019
[3]  Geyer, R., Jambeck, J.R. and Law, K.L. (2017) Production, Use, and Fate of All Plastics Ever Made. Science Advances, 3, e1700782.
https://doi.org/10.1126/sciadv.1700782
[4]  Vera, R. (2010) Identification of Specialist Literature in the Security Field. Master’s Thesis, University of Applied Sciences.
[5]  Dogu, O., Pelucchi, M., Van de Vijver, R., Van Steenberge, P.H.M., D’hooge, D.R., Cuoci, A., et al. (2021) The Chemistry of Chemical Recycling of Solid Plastic Waste via Pyrolysis and Gasification: State-of-the-Art, Challenges, and Future Directions. Progress in Energy and Combustion Science, 84, Article ID: 100901.
https://doi.org/10.1016/j.pecs.2020.100901
[6]  CIEL (2019) Center for International Environmental Law, Plastic & Climate: The Hidden Costs of a Plastic Planet.
[7]  Liang, Y., Tan, Q., Song, Q. and Li, J. (2021) An Analysis of the Plastic Waste Trade and Management in Asia. Waste Management, 119, 242-253.
https://doi.org/10.1016/j.wasman.2020.09.049
[8]  Dauvergne, P. (2018) Why Is the Global Governance of Plastic Failing the Oceans? Global Environmental Change, 51, 22-31.
https://doi.org/10.1016/j.gloenvcha.2018.05.002
[9]  Browning, S., Beymer-Farris, B. and Seay, J.R. (2021) Addressing the Challenges Associated with Plastic Waste Disposal and Management in Developing Countries. Current Opinion in Chemical Engineering, 32, Article ID: 100682.
https://doi.org/10.1016/j.coche.2021.100682
[10]  Brooks, A.L., Wang, S. and Jambeck, J.R. (2018) The Chinese Import Ban and Its Impact on Global Plastic Waste Trade. Science Advances, 4, eaat0131.
https://doi.org/10.1126/sciadv.aat0131
[11]  Toto, R.T.P.B.D. (2019) Alliance to End Plastic Waste Targets Plastic in the Environment.
https://www.recyclingtoday.com/news/alliance-to-end-plastic-waste-targets-plastic-in-environment/
[12]  Pew Charitable Trusts (2020) Breaking the Plastic Wave: A Comprehensive Assessment of Pathways towards Stopping Ocean Plastic Pollution.
[13]  Khoaele, K.K., Gbadeyan, O.J., Chunilall, V. and Sithole, B. (2023) The Devastation of Waste Plastic on the Environment and Remediation Processes: A Critical Review. Sustainability, 15, Article 5233.
https://doi.org/10.3390/su15065233
[14]  Delft, C. (2020) Exploration Chemical Recycling-Extended Summary. What Is the Potential Contribution of Chemical Recycling to Dutch Climate Policy.
https://cedelft.eu/wp-content/uploads/sites/2/2021/03/CE_Delft_2P22_Exploration_chemical_recycling_Extended_summary.pdf
[15]  Vogt, B.D., Stokes, K.K. and Kumar, S.K. (2021) Why Is Recycling of Postconsumer Plastics So Challenging? ACS Applied Polymer Materials, 3, 4325-4346.
https://doi.org/10.1021/acsapm.1c00648
[16]  Solis, M. and Silveira, S. (2020) Technologies for Chemical Recycling of Household Plastics—A Technical Review and TRL Assessment. Waste Management, 105, 128-138.
https://doi.org/10.1016/j.wasman.2020.01.038
[17]  Al-Salem, S.M., Antelava, A., Constantinou, A., Manos, G. and Dutta, A. (2017) A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). Journal of Environmental Management, 197, 177-198.
[18]  Butler, E., Devlin, G. and McDonnell, K. (2011) Waste Polyolefins to Liquid Fuels via Pyrolysis: Review of Commercial State-of-the-Art and Recent Laboratory Research. Waste and Biomass Valorization, 2, 227-255.
https://doi.org/10.1007/s12649-011-9067-5
[19]  Chen, D., Yin, L., Wang, H. and He, P. (2014) Pyrolysis Technologies for Municipal Solid Waste: A Review. Waste Management, 34, 2466-2486.
https://doi.org/10.1016/j.wasman.2014.08.004
[20]  Almeida, D. and Marques, M.D.F. (2016) Thermal and Catalytic Pyrolysis of Plastic Waste. Polímeros, 26, 44-51.
https://doi.org/10.1590/0104-1428.2100
[21]  Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A. and Aroua, M.K. (2016) A Review on Pyrolysis of Plastic Wastes. Energy Conversion and Management, 115, 308-326.
https://doi.org/10.1016/j.enconman.2016.02.037
[22]  Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M. and Nizami, A.S. (2016) Catalytic Pyrolysis of Plastic Waste: A Review. Process Safety and Environmental Protection, 102, 822-838.
https://doi.org/10.1016/j.psep.2016.06.022
[23]  Hong, M. and Chen, E.Y.-X. (2017) Chemically Recyclable Polymers: A Circular Economy Approach to Sustainability. Green Chemistry, 19, 3692-3706.
https://doi.org/10.1039/c7gc01496a
[24]  Lopez, G., Artetxe, M., Amutio, M., Bilbao, J. and Olazar, M. (2017) Thermochemical Routes for the Valorization of Waste Polyolefinic Plastics to Produce Fuels and Chemicals: A Review. Renewable and Sustainable Energy Reviews, 73, 346-368.
https://doi.org/10.1016/j.rser.2017.01.142
[25]  Ragaert, K., Delva, L. and Van Geem, K. (2017) Mechanical and Chemical Recycling of Solid Plastic Waste. Waste Management, 69, 24-58.
https://doi.org/10.1016/j.wasman.2017.07.044
[26]  Rahimi, A. and García, J.M. (2017) Chemical Recycling of Waste Plastics for New Materials Production. Nature Reviews Chemistry, 1, Article No. 46.
https://doi.org/10.1038/s41570-017-0046
[27]  Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L. and Fraternali, F. (2017) Recycling of Plastic Solid Waste: A State of Art Review and Future Applications. Composites Part B: Engineering, 115, 409-422.
https://doi.org/10.1016/j.compositesb.2016.09.013
[28]  Horodytska, O., Valdés, F.J. and Fullana, A. (2018) Plastic Flexible Films Waste Management—A State of Art Review. Waste Management, 77, 413-425.
https://doi.org/10.1016/j.wasman.2018.04.023
[29]  Vijayakumar, A. and Sebastian, J. (2018) Pyrolysis Process to Produce Fuel from Different Types of Plastic—A Review. IOP Conference Series: Materials Science and Engineering, 396, Article ID: 012062.
https://doi.org/10.1088/1757-899x/396/1/012062
[30]  da Silva, D.J. and Wiebeck, H. (2020) Current Options for Characterizing, Sorting, and Recycling Polymeric Waste. Progress in Rubber, Plastics and Recycling Technology, 36, 284-303.
https://doi.org/10.1177/1477760620918603
[31]  Kumar Jha, K. and Kannan, T.T.M. (2021) Recycling of Plastic Waste into Fuel by Pyrolysis—A Review. Materials Today: Proceedings, 37, 3718-3720.
https://doi.org/10.1016/j.matpr.2020.10.181
[32]  Kosloski-Oh, S.C., Wood, Z.A., Manjarrez, Y., de los Rios, J.P. and Fieser, M.E. (2021) Catalytic Methods for Chemical Recycling or Upcycling of Commercial Polymers. Materials Horizons, 8, 1084-1129.
https://doi.org/10.1039/d0mh01286f
[33]  Kumagai, S., Nakatani, J., Saito, Y., Fukushima, Y. and Yoshioka, T. (2020) Latest Trends and Challenges in Feedstock Recycling of Polyolefinic Plastics. Journal of the Japan Petroleum Institute, 63, 345-364.
https://doi.org/10.1627/jpi.63.345
[34]  Murthy, K., Shetty, R.J. and Shiva, K. (2020) Plastic Waste Conversion to Fuel: A Review on Pyrolysis Process and Influence of Operating Parameters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45, 11904-11924.
https://doi.org/10.1080/15567036.2020.1818892
[35]  Nanda, S. and Berruti, F. (2020) Thermochemical Conversion of Plastic Waste to Fuels: A Review. Environmental Chemistry Letters, 19, 123-148.
https://doi.org/10.1007/s10311-020-01094-7
[36]  Qureshi, M.S., Oasmaa, A., Pihkola, H., Deviatkin, I., Tenhunen, A., Mannila, J., et al. (2020) Pyrolysis of Plastic Waste: Opportunities and Challenges. Journal of Analytical and Applied Pyrolysis, 152, Article ID: 104804.
https://doi.org/10.1016/j.jaap.2020.104804
[37]  Pohjakallio, M., Vuorinen, T. and Oasmaa, A. (2020) Chemical Routes for Recycling-Dissolving, Catalytic, and Thermochemical Technologies. In: Letcher, T.M., Ed., Plastic Waste and Recycling, Elsevier, 359-384.
[38]  Thiounn, T. and Smith, R.C. (2020) Advances and Approaches for Chemical Recycling of Plastic Waste. Journal of Polymer Science, 58, 1347-1364.
https://doi.org/10.1002/pol.20190261
[39]  Vollmer, I., Jenks, M.J.F., Roelands, M.C.P., White, R.J., van Harmelen, T., de Wild, P., et al. (2020) Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angewandte Chemie International Edition, 59, 15402-15423.
https://doi.org/10.1002/anie.201915651
[40]  Lee, J., Kwon, E.E., Lam, S.S., Chen, W., Rinklebe, J. and Park, Y. (2021) Chemical Recycling of Plastic Waste via Thermocatalytic Routes. Journal of Cleaner Production, 321, Article ID: 128989.
https://doi.org/10.1016/j.jclepro.2021.128989
[41]  Maafa, I. (2021) Pyrolysis of Polystyrene Waste: A Review. Polymers, 13, Article 225.
https://doi.org/10.3390/polym13020225
[42]  Soni, V.K., Singh, G., Vijayan, B.K., Chopra, A., Kapur, G.S. and Ramakumar, S.S.V. (2021) Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review. Energy & Fuels, 35, 12763-12808.
https://doi.org/10.1021/acs.energyfuels.1c01292
[43]  Spreafico, C., Russo, D. and Spreafico, M. (2021) Investigating the Evolution of Pyrolysis Technologies through Bibliometric Analysis of Patents and Papers. Journal of Analytical and Applied Pyrolysis, 159, Article ID: 105021.
https://doi.org/10.1016/j.jaap.2021.105021
[44]  Zhang, F., Zhao, Y., Wang, D., Yan, M., Zhang, J., Zhang, P., et al. (2021) Current Technologies for Plastic Waste Treatment: A Review. Journal of Cleaner Production, 282, Article ID: 124523.
https://doi.org/10.1016/j.jclepro.2020.124523
[45]  Baytekin, B., Baytekin, H.T. and Grzybowski, B.A. (2013) Retrieving and Converting Energy from Polymers: Deployable Technologies and Emerging Concepts. Energy & Environmental Science, 6, 3467-3482.
https://doi.org/10.1039/c3ee41360h
[46]  Dogu, O., Plehiers, P.P., Van de Vijver, R., D’hooge, D.R., Van Steenberge, P.H.M. and van Geem, K.M. (2021) Distribution Changes during Thermal Degradation of Poly(Styrene Peroxide) by Pairing Tree-Based Kinetic Monte Carlo and Artificial Intelligence Tools. Industrial & Engineering Chemistry Research, 60, 3334-3353.
https://doi.org/10.1021/acs.iecr.0c05414
[47]  Harmon, R.E., SriBala, G., Broadbelt, L.J. and Burnham, A.K. (2021) Insight into Polyethylene and Polypropylene Pyrolysis: Global and Mechanistic Models. Energy & Fuels, 35, 6765-6775.
https://doi.org/10.1021/acs.energyfuels.1c00342
[48]  Askham, C., Pauna, V.H., Boulay, A., Fantke, P., Jolliet, O., Lavoie, J., et al. (2023) Generating Environmental Sampling and Testing Data for Micro-and Nanoplastics for Use in Life Cycle Impact Assessment. Science of the Total Environment, 859, Article ID: 160038.
https://doi.org/10.1016/j.scitotenv.2022.160038
[49]  Stephan, A., Crawford, R.H. and Bontinck, P. (2018) A Model for Streamlining and Automating Path Exchange Hybrid Life Cycle Assessment. The International Journal of Life Cycle Assessment, 24, 237-252.
https://doi.org/10.1007/s11367-018-1521-1
[50]  Chen, X., Matthews, H.S. and Griffin, W.M. (2021) Uncertainty Caused by Life Cycle Impact Assessment Methods: Case Studies in Process-Based LCI Databases. Resources, Conservation and Recycling, 172, Article ID: 105678.
https://doi.org/10.1016/j.resconrec.2021.105678
[51]  Prata, J.C., Silva, A.L.P., da Costa, J.P., Mouneyrac, C., Walker, T.R., Duarte, A.C., et al. (2019) Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. International Journal of Environmental Research and Public Health, 16, Article 2411.
https://doi.org/10.3390/ijerph16132411
[52]  Zhang, Y., Ji, G., Ma, D., Chen, C., Wang, Y., Wang, W., et al. (2020) Exergy and Energy Analysis of Pyrolysis of Plastic Wastes in Rotary Kiln with Heat Carrier. Process Safety and Environmental Protection, 142, 203-211.
https://doi.org/10.1016/j.psep.2020.06.021
[53]  Nimmegeers, P., Parchomenko, A., De Meulenaere, P., D’hooge, D.R., Van Steenberge, P.H.M., Rechberger, H., et al. (2021) Extending Multilevel Statistical Entropy Analysis Towards Plastic Recyclability Prediction. Sustainability, 13, Article 3553.
https://doi.org/10.3390/su13063553
[54]  Mfetoum, I.M., Ngangue, M.K.N., Ngoh, S.K., Koffi, F.L.D., Tamba, J.G. and Monkam, L. (2023) Assessment of Green House Gas Emissions from Thermal Technologies for Electricity Generation in Cameroon Using Life Cycle Analysis Method. Open Access Library Journal, 10, e10481.
https://doi.org/10.4236/oalib.1110481
[55]  Klöpffer, W. (1997) Life Cycle Assessment: From the Beginning to the Current State. Environmental Science and Pollution Research, 4, 223-228.
https://doi.org/10.1007/bf02986351
[56]  Patel, M.K., Bechu, A., Villegas, J.D., Bergez‐Lacoste, M., Yeung, K., et al. (2018) Second‐generation Bio‐based Plastics Are Becoming a Reality—Non-Renewable Energy and Greenhouse Gas (GHG) Balance of Succinic Acid-Based Plastic End Products Made from Lignocellulosic Biomass. Biofuels, Bioproducts and Biorefining, 12, 426-441.
https://doi.org/10.1002/bbb.1849
[57]  Bishop, G., Styles, D. and Lens, P.N.L. (2021) Environmental Performance Comparison of Bioplastics and Petrochemical Plastics: A Review of Life Cycle Assessment (LCA) Methodological Decisions. Resources, Conservation and Recycling, 168, Article ID: 105451.
https://doi.org/10.1016/j.resconrec.2021.105451
[58]  Agostini, A., Giuntoli, J., Marelli, L. and Amaducci, S. (2019) Flaws in the Interpretation Phase of Bioenergy LCA Fuel the Debate and Mislead Policymakers. The International Journal of Life Cycle Assessment, 25, 17-35.
https://doi.org/10.1007/s11367-019-01654-2
[59]  Reap, J., Roman, F., Duncan, S. and Bras, B. (2008) A Survey of Unresolved Problems in Life Cycle Assessment: Part 2: Impact Assessment and Interpretation. The International Journal of Life Cycle Assessment, 13, 374-388.
https://doi.org/10.1007/s11367-008-0009-9
[60]  Hasan, M.M., Rasul, M.G., Khan, M.M.K., Ashwath, N. and Jahirul, M.I. (2021) Energy Recovery from Municipal Solid Waste Using Pyrolysis Technology: A Review on Current Status and Developments. Renewable and Sustainable Energy Reviews, 145, Article ID: 111073.
https://doi.org/10.1016/j.rser.2021.111073
[61]  Alhazmi, H., Almansour, F.H. and Aldhafeeri, Z. (2021) Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability, 13, Article 5340.
https://doi.org/10.3390/su13105340
[62]  FakhrHoseini, S.M. and Dastanian, M. (2013) Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity Coefficient Model. Journal of Chemistry, 2013, Article ID: 487676.
https://doi.org/10.1155/2013/487676
[63]  Bridgwater, A.V. (2012) Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass and Bioenergy, 38, 68-94.
https://doi.org/10.1016/j.biombioe.2011.01.048
[64]  Abnisa, F. and Wan Daud, W.M.A. (2014) A Review on Co-Pyrolysis of Biomass: An Optional Technique to Obtain a High-Grade Pyrolysis Oil. Energy Conversion and Management, 87, 71-85.
https://doi.org/10.1016/j.enconman.2014.07.007
[65]  Papari, S., Bamdad, H. and Berruti, F. (2021) Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials, 14, Article 2586.
https://doi.org/10.3390/ma14102586
[66]  Papari, S., Hawboldt, K. and Helleur, R. (2015) Pyrolysis: A Theoretical and Experimental Study on the Conversion of Softwood Sawmill Residues to Biooil. Industrial & Engineering Chemistry Research, 54, 605-611.
https://doi.org/10.1021/ie5039456
[67]  Papari, S. and Hawboldt, K. (2017) Development and Validation of a Process Model to Describe Pyrolysis of Forestry Residues in an Auger Reactor. Energy & Fuels, 31, 10833-10841.
https://doi.org/10.1021/acs.energyfuels.7b01263
[68]  Heydariaraghi, M., Ghorbanian, S., Hallajisani, A. and Salehpour, A. (2016) Fuel Properties of the Oils Produced from the Pyrolysis of Commonly-Used Polymers: Effect of Fractionating Column. Journal of Analytical and Applied Pyrolysis, 121, 307-317.
https://doi.org/10.1016/j.jaap.2016.08.010
[69]  Kulas, D.G., Zolghadr, A. and Shonnard, D.R. (2022) Liquid-Fed Waste Plastic Pyrolysis Pilot Plant: Effect of Reactor Volume on Product Yields. Journal of Analytical and Applied Pyrolysis, 166, Article ID: 105601.
https://doi.org/10.1016/j.jaap.2022.105601
[70]  Kaminsky, W. (2021) Chemical Recycling of Plastics by Fluidized Bed Pyrolysis. Fuel Communications, 8, Article ID: 100023.
https://doi.org/10.1016/j.jfueco.2021.100023
[71]  Eze, W.U., Umunakwe, R., Obasi, H.C., Ugbaja, M.I., Uche, C.C. and Madufor, I.C. (2021) Plastics Waste Management: A Review of Pyrolysis Technology. Clean Technologies and Recycling, 1, 50-69.
https://doi.org/10.3934/ctr.2021003
[72]  López, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F. and Adrados, A. (2011) Influence of Time and Temperature on Pyrolysis of Plastic Wastes in a Semi-Batch Reactor. Chemical Engineering Journal, 173, 62-71.
https://doi.org/10.1016/j.cej.2011.07.037
[73]  Santaweesuk, C. and Janyalertadun, A. (2017) The Production of Fuel Oil by Conventional Slow Pyrolysis Using Plastic Waste from a Municipal Landfill. International Journal of Environmental Science and Development, 8, 168-173.
https://doi.org/10.18178/ijesd.2017.8.3.941
[74]  Kunwar, B., Moser, B.R., Chandrasekaran, S.R., Rajagopalan, N. and Sharma, B.K. (2016) Catalytic and Thermal Depolymerization of Low Value Post-Consumer High Density Polyethylene Plastic. Energy, 111, 884-892.
https://doi.org/10.1016/j.energy.2016.06.024
[75]  Shah, J., Jan, M.R., Mabood, F. and Jabeen, F. (2010) Catalytic Pyrolysis of LDPE Leads to Valuable Resource Recovery and Reduction of Waste Problems. Energy Conversion and Management, 51, 2791-2801.
https://doi.org/10.1016/j.enconman.2010.06.016
[76]  Bow, Y., Rusdianasari, and Sutini Pujiastuti, L. (2019) Pyrolysis of Polypropylene Plastic Waste into Liquid Fuel. IOP Conference Series: Earth and Environmental Science, 347, Article ID: 012128.
https://doi.org/10.1088/1755-1315/347/1/012128
[77]  Honus, S., Kumagai, S., Fedorko, G., Molnár, V. and Yoshioka, T. (2018) Pyrolysis Gases Produced from Individual and Mixed PE, PP, PS, PVC, and Pet—Part I: Production and Physical Properties. Fuel, 221, 346-360.
https://doi.org/10.1016/j.fuel.2018.02.074
[78]  Jain, A. and Vinu, R. (2022) Kinetic Experiments for Pyrolytic Recycling of Solid Plastic Waste. Advances in Chemical Engineering, 60, 77-116.
https://doi.org/10.1016/bs.ache.2022.09.008
[79]  Loharkar, P.K., Ingle, A. and Jhavar, S. (2019) Parametric Review of Microwave-Based Materials Processing and Its Applications. Journal of Materials Research and Technology, 8, 3306-3326.
https://doi.org/10.1016/j.jmrt.2019.04.004
[80]  Ludlow-Palafox, C. and Chase, H.A. (2001) Microwave-Induced Pyrolysis of Plastic Wastes. Industrial & Engineering Chemistry Research, 40, 4749-4756.
https://doi.org/10.1021/ie010202j
[81]  Hussain, Z., Khan, K.M. and Hussain, K. (2010) Microwave-Metal Interaction Pyrolysis of Polystyrene. Journal of Analytical and Applied Pyrolysis, 89, 39-43.
https://doi.org/10.1016/j.jaap.2010.05.003
[82]  Undri, A., et al. (2011) Microwave Pyrolysis of Polymeric Materials. In: Chandra, U., Ed., Microwave Heating, IntechOpen, 207-312.
[83]  Panda, A.K. and Singh, R. (2011) Catalytic Performances of Kaoline and Silica Alumina in the Thermal Degradation of Polypropylene. Journal of Fuel Chemistry and Technology, 39, 198-202.
https://doi.org/10.1016/s1872-5813(11)60017-0
[84]  Manos, G., Yusof, I.Y., Papayannakos, N. and Gangas, N.H. (2001) Catalytic Cracking of Polyethylene over Clay Catalysts. Comparison with an Ultrastable Y Zeolite. Industrial & Engineering Chemistry Research, 40, 2220-2225.
https://doi.org/10.1021/ie001048o
[85]  Praveen Kumar, K. and Srinivas, S. (2019) Catalytic Co-Pyrolysis of Biomass and Plastics (Polypropylene and Polystyrene) Using Spent FCC Catalyst. Energy & Fuels, 34, 460-473.
https://doi.org/10.1021/acs.energyfuels.9b03135
[86]  Ratnasari, D.K., Nahil, M.A. and Williams, P.T. (2017) Catalytic Pyrolysis of Waste Plastics Using Staged Catalysis for Production of Gasoline Range Hydrocarbon Oils. Journal of Analytical and Applied Pyrolysis, 124, 631-637.
https://doi.org/10.1016/j.jaap.2016.12.027
[87]  Dai, L., Zhou, N., Lv, Y., Cobb, K., Chen, P., Wang, Y., et al. (2022) Catalytic Reforming of Polyethylene Pyrolysis Vapors to Naphtha Range Hydrocarbons with Low Aromatic Content over a High Silica ZSM-5 Zeolite. Science of the Total Environment, 847, Article ID: 157658.
https://doi.org/10.1016/j.scitotenv.2022.157658
[88]  Sobko, A.A. (2008) Generalized van der Waals-Berthelot Equation of State. Doklady Physics, 53, 416-419.
https://doi.org/10.1134/s1028335808080028
[89]  Kumar, S. and Singh, R.K. (2011) Recovery of Hydrocarbon Liquid from Waste High Density Polyethylene by Thermal Pyrolysis. Brazilian Journal of Chemical Engineering, 28, 659-667.
https://doi.org/10.1590/s0104-66322011000400011
[90]  Çepelioğullar, Ö. and Pütün, A.E. (2013) Utilization of Two Different Types of Plastic Wastes from Daily and Industrial Life. Journal of Selcuk University Natural and Applied Science, 2, 694-706.
[91]  Chin, B.L.F., Yusup, S., Al Shoaibi, A., Kannan, P., Srinivasakannan, C. and Sulaiman, S.A. (2014) Kinetic Studies of Co-Pyrolysis of Rubber Seed Shell with High Density Polyethylene. Energy Conversion and Management, 87, 746-753.
https://doi.org/10.1016/j.enconman.2014.07.043
[92]  Marcilla, A., García-Quesada, J.C., Sánchez, S. and Ruiz, R. (2005) Study of the Catalytic Pyrolysis Behaviour of Polyethylene-Polypropylene Mixtures. Journal of Analytical and Applied Pyrolysis, 74, 387-392.
https://doi.org/10.1016/j.jaap.2004.10.005
[93]  Marcilla, A., Beltrán, M.I. and Navarro, R. (2009) Evolution of Products during the Degradation of Polyethylene in a Batch Reactor. Journal of Analytical and Applied Pyrolysis, 86, 14-21.
https://doi.org/10.1016/j.jaap.2009.03.004
[94]  Marcilla, A., Beltrán, M.I. and Navarro, R. (2009) Thermal and Catalytic Pyrolysis of Polyethylene over HZSM5 and HUSY Zeolites in a Batch Reactor under Dynamic Conditions. Applied Catalysis B: Environmental, 86, 78-86.
https://doi.org/10.1016/j.apcatb.2008.07.026
[95]  Jung, S., Cho, M., Kang, B. and Kim, J. (2010) Pyrolysis of a Fraction of Waste Polypropylene and Polyethylene for the Recovery of BTX Aromatics Using a Fluidized Bed Reactor. Fuel Processing Technology, 91, 277-284.
https://doi.org/10.1016/j.fuproc.2009.10.009
[96]  Onwudili, J.A., Insura, N. and Williams, P.T. (2009) Composition of Products from the Pyrolysis of Polyethylene and Polystyrene in a Closed Batch Reactor: Effects of Temperature and Residence Time. Journal of Analytical and Applied Pyrolysis, 86, 293-303.
https://doi.org/10.1016/j.jaap.2009.07.008
[97]  Demirbas, A. (2004) Pyrolysis of Municipal Plastic Wastes for Recovery of Gasoline-Range Hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72, 97-102.
https://doi.org/10.1016/j.jaap.2004.03.001
[98]  Murata, K., Sato, K. and Sakata, Y. (2004) Effect of Pressure on Thermal Degradation of Polyethylene. Journal of Analytical and Applied Pyrolysis, 71, 569-589.
https://doi.org/10.1016/j.jaap.2003.08.010
[99]  Mastral, F.J., Esperanza, E., Berrueco, C., Juste, M. and Ceamanos, J. (2003) Fluidized Bed Thermal Degradation Products of HDPE in an Inert Atmosphere and in Air-Nitrogen Mixtures. Journal of Analytical and Applied Pyrolysis, 70, 1-17.
https://doi.org/10.1016/s0165-2370(02)00068-2
[100]  Zhao, D., Wang, X., Miller, J.B. and Huber, G.W. (2020) The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. ChemSusChem, 13, 1764-1774.
https://doi.org/10.1002/cssc.201903434
[101]  Jan, M.R., Shah, J. and Gulab, H. (2010) Catalytic Degradation of Waste High-Density Polyethylene into Fuel Products Using BaCO3 as a Catalyst. Fuel Processing Technology, 91, 1428-1437.
https://doi.org/10.1016/j.fuproc.2010.05.017
[102]  Miskolczi, N., Bartha, L., Deák, G., Jóver, B. and Kalló, D. (2004) Thermal and Thermo-Catalytic Degradation of High-Density Polyethylene Waste. Journal of Analytical and Applied Pyrolysis, 72, 235-242.
https://doi.org/10.1016/j.jaap.2004.07.002
[103]  Adnan,, Shah, J. and Jan, M.R. (2014) Thermo-Catalytic Pyrolysis of Polystyrene in the Presence of Zinc Bulk Catalysts. Journal of the Taiwan Institute of Chemical Engineers, 45, 2494-2500.
https://doi.org/10.1016/j.jtice.2014.05.011
[104]  García, R.A., Serrano, D.P. and Otero, D. (2005) Catalytic Cracking of HDPE over Hybrid Zeolitic-Mesoporous Materials. Journal of Analytical and Applied Pyrolysis, 74, 379-386.
https://doi.org/10.1016/j.jaap.2004.11.002
[105]  Kim, S. and Kim, S. (2004) Pyrolysis Characteristics of Polystyrene and Polypropylene in a Stirred Batch Reactor. Chemical Engineering Journal, 98, 53-60.
https://doi.org/10.1016/s1385-8947(03)00184-0
[106]  Cardona, S.C. and Corma, A. (2000) Tertiary Recycling of Polypropylene by Catalytic Cracking in a Semibatch Stirred Reactor: Use of Spent Equilibrium FCC Commercial Catalyst. Applied Catalysis B: Environmental, 25, 151-162.
https://doi.org/10.1016/s0926-3373(99)00127-7
[107]  Adrados, A., de Marco, I., Caballero, B.M., López, A., Laresgoiti, M.F. and Torres, A. (2012) Pyrolysis of Plastic Packaging Waste: A Comparison of Plastic Residuals from Material Recovery Facilities with Simulated Plastic Waste. Waste Management, 32, 826-832.
https://doi.org/10.1016/j.wasman.2011.06.016
[108]  Uemura, Y., Azeura, M., Ohzuno, Y. and Hatate, Y. (2001) Flash-Pyrolyzed Product Distribution of Major Plastics in a Batch Reactor. Journal of Chemical Engineering of Japan, 34, 1293-1299.
https://doi.org/10.1252/jcej.34.1293
[109]  Lee, K. and Shin, D. (2007) Characteristics of Liquid Product from the Pyrolysis of Waste Plastic Mixture at Low and High Temperatures: Influence of Lapse Time of Reaction. Waste Management, 27, 168-176.
https://doi.org/10.1016/j.wasman.2005.12.017
[110]  Abbas-Abadi, M.S., Haghighi, M.N. and Yeganeh, H. (2013) Evaluation of Pyrolysis Product of Virgin High Density Polyethylene Degradation Using Different Process Parameters in a Stirred Reactor. Fuel Processing Technology, 109, 90-95.
https://doi.org/10.1016/j.fuproc.2012.09.042
[111]  Lee, K., Noh, N., Shin, D. and Seo, Y. (2002) Comparison of Plastic Types for Catalytic Degradation of Waste Plastics into Liquid Product with Spent FCC Catalyst. Polymer Degradation and Stability, 78, 539-544.
https://doi.org/10.1016/s0141-3910(02)00227-6
[112]  Lee, K.H. (2008) Composition of Aromatic Products in the Catalytic Degradation of the Mixture of Waste Polystyrene and High-Density Polyethylene Using Spent FCC Catalyst. Polymer Degradation and Stability, 93, 1284-1289.
https://doi.org/10.1016/j.polymdegradstab.2008.04.009
[113]  Bagri, R. and Williams, P.T. (2002) Catalytic Pyrolysis of Polyethylene. Journal of Analytical and Applied Pyrolysis, 63, 29-41.
https://doi.org/10.1016/s0165-2370(01)00139-5
[114]  Saad, J.M., Nahil, M.A. and Williams, P.T. (2015) Influence of Process Conditions on Syngas Production from the Thermal Processing of Waste High Density Polyethylene. Journal of Analytical and Applied Pyrolysis, 113, 35-40.
https://doi.org/10.1016/j.jaap.2014.09.027
[115]  Renzini, M.S., Lerici, L.C., Sedran, U. and Pierella, L.B. (2011) Stability of ZSM-11 and BETA Zeolites during the Catalytic Cracking of Low-Density Polyethylene. Journal of Analytical and Applied Pyrolysis, 92, 450-455.
https://doi.org/10.1016/j.jaap.2011.08.008
[116]  Choi, S.J., Park, Y., Jeong, K., Kim, T., Chae, H., Park, S.H., et al. (2010) Catalytic Degradation of Polyethylene over Sba-16. Korean Journal of Chemical Engineering, 27, 1446-1451.
https://doi.org/10.1007/s11814-010-0281-9
[117]  Ballice, L. (2001) A Kinetic Approach to the Temperature-Programmed Pyrolysis of Low-and High-Density Polyethylene in a Fixed Bed Reactor: Determination of Kinetic Parameters for the Evolution of n-Paraffins and 1-Olefins. Fuel, 80, 1923-1935.
https://doi.org/10.1016/s0016-2361(01)00067-9
[118]  Fogler, H.S. (2020) Elements of Chemical Reaction Engineering. Pearson.
[119]  Park, K., Jeong, Y., Guzelciftci, B. and Kim, J. (2020) Two-Stage Pyrolysis of Polystyrene: Pyrolysis Oil as a Source of Fuels or Benzene, Toluene, Ethylbenzene, and Xylenes. Applied Energy, 259, Article ID: 114240.
https://doi.org/10.1016/j.apenergy.2019.114240
[120]  Mastral, F.J., Esperanza, E., García, P. and Juste, M. (2002) Pyrolysis of High-Density Polyethylene in a Fluidised Bed Reactor. Influence of the Temperature and Residence Time. Journal of Analytical and Applied Pyrolysis, 63, 1-15.
https://doi.org/10.1016/s0165-2370(01)00137-1
[121]  Liu, Y., Qian, J. and Wang, J. (2000) Pyrolysis of Polystyrene Waste in a Fluidized-Bed Reactor to Obtain Styrene Monomer and Gasoline Fraction. Fuel Processing Technology, 63, 45-55.
https://doi.org/10.1016/s0378-3820(99)00066-1
[122]  Lin, Y.J. and Yen, H.Y. (2005) Fluidised Bed Pyrolysis of Polypropylene over Cracking Catalysts for Producing Hydrocarbons. Polymer Degradation and Stability, 89, 101-108.
https://doi.org/10.1016/j.polymdegradstab.2005.01.006
[123]  Marcilla, A., Hernández, M.D.R. and García, Á.N. (2007) Study of the Polymer-Catalyst Contact Effectivity and the Heating Rate Influence on the HDPE Pyrolysis. Journal of Analytical and Applied Pyrolysis, 79, 424-432.
https://doi.org/10.1016/j.jaap.2006.10.017
[124]  Lin, Y.H., Yang, M.H., Yeh, T.F. and Ger, M.D. (2004) Catalytic Degradation of High Density Polyethylene over Mesoporous and Microporous Catalysts in a Fluidised-Bed Reactor. Polymer Degradation and Stability, 86, 121-128.
https://doi.org/10.1016/j.polymdegradstab.2004.02.015
[125]  Mastral, J.F., Berrueco, C., Gea, M. and Ceamanos, J. (2006) Catalytic Degradation of High Density Polyethylene over Nanocrystalline HZSM-5 Zeolite. Polymer Degradation and Stability, 91, 3330-3338.
https://doi.org/10.1016/j.polymdegradstab.2006.06.009
[126]  Yan, R., Liang, D.T., Tsen, L., Yao, K. and Tay, J.H. (2003). Case Studies: Problems Solving in Fluidized Bed Waste Fuel Incineration. 17th International Conference on Fluidized Bed Combustion, Jacksonville, 18-21 May 2003, 729-735.
https://doi.org/10.1115/fbc2003-020
[127]  Inayat, A., Inayat, A., Schwieger, W., Sokolova, B. and Lestinsky, P. (2022) Enhancing Aromatics and Olefins Yields in Thermo-Catalytic Pyrolysis of LDPE over Zeolites: Role of Staged Catalysis and Acid Site Density of HZSM-5. Fuel, 314, Article ID: 123071.
https://doi.org/10.1016/j.fuel.2021.123071
[128]  Olazar, M., Lopez, G., Amutio, M., Elordi, G., Aguado, R. and Bilbao, J. (2009) Influence of FCC Catalyst Steaming on HDPE Pyrolysis Product Distribution. Journal of Analytical and Applied Pyrolysis, 85, 359-365.
https://doi.org/10.1016/j.jaap.2008.10.016
[129]  Elordi, G., Olazar, M., Castaño, P., Artetxe, M. and Bilbao, J. (2012) Polyethylene Cracking on a Spent FCC Catalyst in a Conical Spouted Bed. Industrial & Engineering Chemistry Research, 51, 14008-14017.
https://doi.org/10.1021/ie3018274
[130]  Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Bilbao, J. and Olazar, M. (2013) Cracking of High Density Polyethylene Pyrolysis Waxes on HZSM-5 Catalysts of Different Acidity. Industrial & Engineering Chemistry Research, 52, 10637-10645.
https://doi.org/10.1021/ie4014869
[131]  Elordi, G., Olazar, M., Lopez, G., Amutio, M., Artetxe, M., Aguado, R., et al. (2009) Catalytic Pyrolysis of HDPE in Continuous Mode over Zeolite Catalysts in a Conical Spouted Bed Reactor. Journal of Analytical and Applied Pyrolysis, 85, 345-351.
https://doi.org/10.1016/j.jaap.2008.10.015
[132]  Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J. and Olazar, M. (2012) Characterization of the Waxes Obtained by the Pyrolysis of Polyolefin Plastics in a Conical Spouted Bed Reactor. Journal of Analytical and Applied Pyrolysis, 94, 230-237.
https://doi.org/10.1016/j.jaap.2011.12.012
[133]  Aguado, R., Olazar, M., Gaisán, B., Prieto, R. and Bilbao, J. (2002) Kinetic Study of Polyolefin Pyrolysis in a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 41, 4559-4566.
https://doi.org/10.1021/ie0201260
[134]  Elordi, G., Olazar, M., Aguado, R., Lopez, G., Arabiourrutia, M. and Bilbao, J. (2007) Catalytic Pyrolysis of High Density Polyethylene in a Conical Spouted Bed Reactor. Journal of Analytical and Applied Pyrolysis, 79, 450-455.
https://doi.org/10.1016/j.jaap.2006.11.010
[135]  Lam, S.S. and Chase, H.A. (2012) A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies, 5, 4209-4232.
https://doi.org/10.3390/en5104209
[136]  Fernández Díez, Y., Arenillas de la Puente, A. and Menéndez Díaz, J.Á. (2011) Microwave heating applied to pyrolysis. InTech, 72, 723-752.
[137]  Werny, M.J., Meirer, F. and Weckhuysen, B.M. (2023) Visualizing the Structure, Composition and Activity of Single Catalyst Particles for Olefin Polymerization and Polyolefin Decomposition. Angewandte Chemie International Edition, 63, e202306033.
https://doi.org/10.1002/anie.202306033
[138]  Stelmachowski, M. (2010) Thermal Conversion of Waste Polyolefins to the Mixture of Hydrocarbons in the Reactor with Molten Metal Bed. Energy Conversion and Management, 51, 2016-2024.
https://doi.org/10.1016/j.enconman.2010.02.035
[139]  Degnan Jr., T.F. (2000) Applications of Zeolites in Petroleum Refining. Topics in Catalysis, 13, 349-356.
https://doi.org/10.1023/a:1009054905137
[140]  Čejka, J., Žilková, N. and Nachtigall, P. (2005) Molecular Sieves: From Basic Research to Industrial Applications. Proceedings of the 3rd International Zeolite Symposium (3rd FEZA), Prague, 23-26 August 2005.
[141]  Al-Salem, S.M. (2019) Thermal Pyrolysis of High Density Polyethylene (HDPE) in a Novel Fixed Bed Reactor System for the Production of High Value Gasoline Range Hydrocarbons (HC). Process Safety and Environmental Protection, 127, 171-179.
https://doi.org/10.1016/j.psep.2019.05.008
[142]  Sadeghbeigi, R. (2020) Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units. Butterworth-Heinemann.
[143]  Khande, A.R., et al. (2021) Recent Developments in FCC Process and Catalysts. In: Pant, K.K., Gupta, S.K. and Ahmad, E., Eds., Catalysis for Clean Energy and Environmental Sustainability, Springer, 65-108.
https://doi.org/10.1007/978-3-030-65021-6_3
[144]  Vollmer, I., Jenks, M.J.F., Mayorga González, R., Meirer, F. and Weckhuysen, B.M. (2021) Plastic Waste Conversion over a Refinery Waste Catalyst. Angewandte Chemie International Edition, 60, 16101-16108.
https://doi.org/10.1002/anie.202104110
[145]  Marcilly, C.R. (2000) Where and How Shape Selectivity of Molecular Sieves Operates in Refining and Petrochemistry Catalytic Processes. Topics in Catalysis, 13, 357-366.
https://doi.org/10.1023/a:1009007021975
[146]  Liu, Y., et al. (2024) Degradation of Polystyrene to Aromatic Oils with NiO@ C Catalyst in Supercritical CO2.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4739644
[147]  Kasar, P., Sharma, D.K. and Ahmaruzzaman, M. (2020) Thermal and Catalytic Decomposition of Waste Plastics and Its Co-Processing with Petroleum Residue through Pyrolysis Process. Journal of Cleaner Production, 265, Article ID: 121639.
https://doi.org/10.1016/j.jclepro.2020.121639
[148]  Abbas-Abadi, M.S., Haghighi, M.N., Yeganeh, H. and McDonald, A.G. (2014) Evaluation of Pyrolysis Process Parameters on Polypropylene Degradation Products. Journal of Analytical and Applied Pyrolysis, 109, 272-277.
https://doi.org/10.1016/j.jaap.2014.05.023
[149]  ISO (2006) International Standard ISO 14044, Environmental Management—Life Cycle Assessment—Requirements and Guidelines.
[150]  Hauschild, M.Z. and Huijbregts, M.A. (2015) Introducing Life Cycle Impact Assessment. Springer.
https://doi.org/10.1007/978-94-017-9744-3
[151]  Uludağ, O. and Yusuf, U. (2019) Life Cycle Analysis of an Expandable Polystyrene Product. Kahramanmaraş Sütçü İmam Üniversitesi Mühendis-lik Bilimleri Dergisi, 22, 155-162.
[152]  Chen, C., Dai, L., Ma, L. and Guo, R. (2020) Enzymatic Degradation of Plant Biomass and Synthetic Polymers. Nature Reviews Chemistry, 4, 114-126.
https://doi.org/10.1038/s41570-020-0163-6
[153]  Ügdüler, S., Van Geem, K.M., Roosen, M., Delbeke, E.I.P. and De Meester, S. (2020) Challenges and Opportunities of Solvent-Based Additive Extraction Methods for Plastic Recycling. Waste Management, 104, 148-182.
https://doi.org/10.1016/j.wasman.2020.01.003
[154]  Perugini, F., Mastellone, M.L. and Arena, U. (2005) A Life Cycle Assessment of Mechanical and Feedstock Recycling Options for Management of Plastic Packaging Wastes. Environmental Progress, 24, 137-154.
https://doi.org/10.1002/ep.10078
[155]  Iribarren, D., Dufour, J. and Serrano, D.P. (2012) Preliminary Assessment of Plastic Waste Valorization via Sequential Pyrolysis and Catalytic Reforming. Journal of Material Cycles and Waste Management, 14, 301-307.
https://doi.org/10.1007/s10163-012-0069-6
[156]  Benavides, P.T., Sun, P., Han, J., Dunn, J.B. and Wang, M. (2017) Life-Cycle Analysis of Fuels from Post-Use Non-Recycled Plastics. Fuel, 203, 11-22.
https://doi.org/10.1016/j.fuel.2017.04.070
[157]  Gear, M., Sadhukhan, J., Thorpe, R., Clift, R., Seville, J. and Keast, M. (2018) A Life Cycle Assessment Data Analysis Toolkit for the Design of Novel Processes—A Case Study for a Thermal Cracking Process for Mixed Plastic Waste. Journal of Cleaner Production, 180, 735-747.
https://doi.org/10.1016/j.jclepro.2018.01.015
[158]  Demetrious, A. and Crossin, E. (2019) Life Cycle Assessment of Paper and Plastic Packaging Waste in Landfill, Incineration, and Gasification-Pyrolysis. Journal of Material Cycles and Waste Management, 21, 850-860.
https://doi.org/10.1007/s10163-019-00842-4
[159]  Khoo, H.H. (2019) LCA of Plastic Waste Recovery into Recycled Materials, Energy and Fuels in Singapore. Resources, Conservation and Recycling, 145, 67-77.
https://doi.org/10.1016/j.resconrec.2019.02.010
[160]  Faraca, G., Martinez-Sanchez, V. and Astrup, T.F. (2019) Environmental Life Cycle Cost Assessment: Recycling of Hard Plastic Waste Collected at Danish Recycling Centres. Resources, Conservation and Recycling, 143, 299-309.
https://doi.org/10.1016/j.resconrec.2019.01.014
[161]  Gracida-Alvarez, U.R., Winjobi, O., Sacramento-Rivero, J.C. and Shonnard, D.R. (2019) System Analyses of High-Value Chemicals and Fuels from a Waste High-Density Polyethylene Refinery. Part 2: Carbon Footprint Analysis and Regional Electricity Effects. ACS Sustainable Chemistry & Engineering, 7, 18267-18278.
https://doi.org/10.1021/acssuschemeng.9b04764
[162]  Meys, R., Frick, F., Westhues, S., Sternberg, A., Klankermayer, J. and Bardow, A. (2020) Towards a Circular Economy for Plastic Packaging Wastes—The Environmental Potential of Chemical Recycling. Resources, Conservation and Recycling, 162, Article ID: 105010.
https://doi.org/10.1016/j.resconrec.2020.105010
[163]  Somoza-Tornos, A., Gonzalez-Garay, A., Pozo, C., Graells, M., Espuña, A. and Guillén-Gosálbez, G. (2020) Realizing the Potential High Benefits of Circular Economy in the Chemical Industry: Ethylene Monomer Recovery via Polyethylene Pyrolysis. ACS Sustainable Chemistry & Engineering, 8, 3561-3572.
https://doi.org/10.1021/acssuschemeng.9b04835
[164]  BASF (2021) Life Cycle Assessment (LCA) for ChemCycling.
[165]  Bora, R.R., Wang, R. and You, F. (2020) Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives. ACS Sustainable Chemistry & Engineering, 8, 16350-16363.
https://doi.org/10.1021/acssuschemeng.0c06311
[166]  Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., et al. (2021) Life Cycle Environmental Impacts of Chemical Recycling via Pyrolysis of Mixed Plastic Waste in Comparison with Mechanical Recycling and Energy Recovery. Science of the Total Environment, 769, Article ID: 144483.
https://doi.org/10.1016/j.scitotenv.2020.144483
[167]  Zhao, X. and You, F. (2021) Consequential Life Cycle Assessment and Optimization of High-Density Polyethylene Plastic Waste Chemical Recycling. ACS Sustainable Chemistry & Engineering, 9, 12167-12184.
https://doi.org/10.1021/acssuschemeng.1c03587
[168]  Schwarz, A.E., Ligthart, T.N., Godoi Bizarro, D., De Wild, P., Vreugdenhil, B. and van Harmelen, T. (2021) Plastic Recycling in a Circular Economy; Determining Environmental Performance through an LCA Matrix Model Approach. Waste Management, 121, 331-342.
https://doi.org/10.1016/j.wasman.2020.12.020
[169]  Civancik-Uslu, D., Nhu, T.T., Van Gorp, B., Kresovic, U., Larrain, M., Billen, P., et al. (2021) Moving from Linear to Circular Household Plastic Packaging in Belgium: Prospective Life Cycle Assessment of Mechanical and Thermochemical Recycling. Resources, Conservation and Recycling, 171, Article ID: 105633.
https://doi.org/10.1016/j.resconrec.2021.105633
[170]  Al-Salem, S.M., Evangelisti, S. and Lettieri, P. (2014) Life Cycle Assessment of Alternative Technologies for Municipal Solid Waste and Plastic Solid Waste Management in the Greater London Area. Chemical Engineering Journal, 244, 391-402.
https://doi.org/10.1016/j.cej.2014.01.066
[171]  Jeswani, H., Krüger, C., Russ, M., Horlacher, M., Antony, F., Hann, S., et al. (2021) Life Cycle Environmental Impacts of Chemical Recycling via Pyrolysis of Mixed Plastic Waste in Comparison with Mechanical Recycling and Energy Recovery. Science of the Total Environment, 769, Article ID: 144483.
https://doi.org/10.1016/j.scitotenv.2020.144483
[172]  Jiang, G., Sanchez Monsalve, D.A., Clough, P., Jiang, Y. and Leeke, G.A. (2021) Understanding the Dechlorination of Chlorinated Hydrocarbons in the Pyrolysis of Mixed Plastics. ACS Sustainable Chemistry & Engineering, 9, 1576-1589.
https://doi.org/10.1021/acssuschemeng.0c06461
[173]  Kol, R., et al. (2021) Recent Advances in Pre-Treatment of Plastic Packaging Waste. In: Achilias, D.S., Ed., Waste Material Recycling in the Circular Economy-Challenges and Developments, IntechOpen.
[174]  Kusenberg, M., Zayoud, A., Roosen, M., Thi, H.D., Abbas-Abadi, M.S., Eschenbacher, A., et al. (2022) A Comprehensive Experimental Investigation of Plastic Waste Pyrolysis Oil Quality and Its Dependence on the Plastic Waste Composition. Fuel Processing Technology, 227, Article ID: 107090.
https://doi.org/10.1016/j.fuproc.2021.107090
[175]  Ahamed, A., Veksha, A., Yin, K., Weerachanchai, P., Giannis, A. and Lisak, G. (2020) Environmental Impact Assessment of Converting Flexible Packaging Plastic Waste to Pyrolysis Oil and Multi-Walled Carbon Nanotubes. Journal of Hazardous Materials, 390, Article ID: 121449.
https://doi.org/10.1016/j.jhazmat.2019.121449
[176]  Veksha, A., Ahamed, A., Wu, X.Y., Liang, L., Chan, W.P., Giannis, A., et al. (2022) Technical and Environmental Assessment of Laboratory Scale Approach for Sustainable Management of Marine Plastic Litter. Journal of Hazardous Materials, 421, Article ID: 126717.
https://doi.org/10.1016/j.jhazmat.2021.126717
[177]  Pires da Mata Costa, L., Micheline Vaz de Miranda, D., Couto de Oliveira, A.C., Falcon, L., Stella Silva Pimenta, M., Guilherme Bessa, I., et al. (2021) Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes, 9, Article 759.
https://doi.org/10.3390/pr9050759
[178]  Economics, M. (2019) Industrial Transformation 2050: Pathways to Net-Zero Emissions from EU Heavy Industry. University of Cambridge Institute for Sustainability Leadership (CISL).
[179]  Spierling, S., Knüpffer, E., Behnsen, H., Mudersbach, M., Krieg, H., Springer, S., et al. (2018) Bio-based Plastics—A Review of Environmental, Social and Economic Impact Assessments. Journal of Cleaner Production, 185, 476-491.
https://doi.org/10.1016/j.jclepro.2018.03.014
[180]  Ekener-Petersen, E. and Finnveden, G. (2012) Potential Hotspots Identified by Social LCA—Part 1: A Case Study of a Laptop Computer. The International Journal of Life Cycle Assessment, 18, 127-143.
https://doi.org/10.1007/s11367-012-0442-7
[181]  Valente, C., Brekke, A. and Modahl, I.S. (2017) Testing Environmental and Social Indicators for Biorefineries: Bioethanol and Biochemical Production. The International Journal of Life Cycle Assessment, 23, 581-596.
https://doi.org/10.1007/s11367-017-1331-x
[182]  Ibáñez-Forés, V., Bovea, M.D., Coutinho-Nóbrega, C. and de Medeiros, H.R. (2019) Assessing the Social Performance of Municipal Solid Waste Management Systems in Developing Countries: Proposal of Indicators and a Case Study. Ecological Indicators, 98, 164-178.
https://doi.org/10.1016/j.ecolind.2018.10.031
[183]  Arena, U., Ardolino, F. and Di Gregorio, F. (2016) Technological, Environmental and Social Aspects of a Recycling Process of Post-Consumer Absorbent Hygiene Products. Journal of Cleaner Production, 127, 289-301.
https://doi.org/10.1016/j.jclepro.2016.03.164
[184]  Reinales, D., Zambrana-Vasquez, D. and Saez-De-Guinoa, A. (2020) Social Life Cycle Assessment of Product Value Chains under a Circular Economy Approach: A Case Study in the Plastic Packaging Sector. Sustainability, 12, Article 6671.
https://doi.org/10.3390/su12166671
[185]  Ramos Huarachi, D.A., Piekarski, C.M., Puglieri, F.N. and de Francisco, A.C. (2020) Past and Future of Social Life Cycle Assessment: Historical Evolution and Research Trends. Journal of Cleaner Production, 264, Article ID: 121506.
https://doi.org/10.1016/j.jclepro.2020.121506
[186]  Kühnen, M. and Hahn, R. (2017) Indicators in Social Life Cycle Assessment: A Review of Frameworks, Theories, and Empirical Experience. Journal of Industrial Ecology, 21, 1547-1565.
https://doi.org/10.1111/jiec.12663
[187]  Petti, L., Serreli, M. and Di Cesare, S. (2016) Systematic Literature Review in Social Life Cycle Assessment. The International Journal of Life Cycle Assessment, 23, 422-431.
https://doi.org/10.1007/s11367-016-1135-4
[188]  Bonilla-Alicea, R.J. and Fu, K. (2021) Evaluation of a Challenge-Derived Social Life Cycle Assessment (S-LCA) Framework. International Journal of Sustainable Engineering, 14, 1680-1697.
https://doi.org/10.1080/19397038.2021.2004258
[189]  Osung, E.O. and Alabi, S.B. (2022) Techno-Economic Evaluation of Thermal and Catalytic Pyrolysis Plants for the Conversion of Heterogeneous Waste Plastics to Liquid Fuels in Nigeria. Journal of Power and Energy Engineering, 10, 56-69.
https://doi.org/10.4236/jpee.2022.107004

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413