全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Optimization and Characterization of Cellulose Extraction from Grevillea robusta (Silky Oak) Leaves by Soda-Anthraquinone Pulping Using Response Surface Methodology

DOI: 10.4236/gsc.2024.143004, PP. 43-65

Keywords: Cellulose Extraction, Response Surface Methodology, Central Composite Design, Delignification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Response surface methodology (RSM) using the central composite design (CCD) was applied to examine the impact of soda-anthraquinone pulping conditions on Grevillea robusta fall leaves. The pulping factors studied were: NaOH charge 5% to 20% w/v, pulping time 30 to 180 minutes, and the anthraquinone charge 0.1 to 0.5% w/w based on the oven-dried leaves. The responses evaluated were the pulp yield, cellulose content, and the degree of delignification. Various regression models were used to evaluate the effects of varying the pulping conditions. The optimum conditions attained were; NaOH charge of 14.63%, 0.1% anthraquinone, and a pulping period of 154 minutes, corresponding to 20.68% pulp yield, 80.56% cellulose content, and 70.34% lignin removal. Analysis of variance (ANOVA), was used to determine the most important variables that improve the extraction process of cellulose. The experiment outcomes matched those predicted by the model (Predicted R2 = 0.9980, Adjusted R2 = 0.9994), demonstrating the adequacy of the model used. FTIR analysis confirmed the elimination of the non-cellulosic fiber constituents. The lignin and hemicellulose-related bands (around 1514 cm1, 1604 cm1, 1239 cm1, and 1734 cm1) decreased with chemical treatment, indicating effective cellulose extraction by the soda-anthraquinone method. Similar results were obtained by XRD, SEM and thermogravimetric analysis of the extracted cellulose. Therefore, Grevillea robusta fall leaves are suitable renewable, cost-effective, and environmentally friendly non-wood biomass for cellulose extraction.

References

[1]  Paridah, M.T., Juliana, A.H., Zaidon, A. and Abdul Khalil, H.P.S. (2015) Nonwood-Based Composites. Current Forestry Reports, 1, 221-238.
https://doi.org/10.1007/s40725-015-0023-7
[2]  Hapani, U., Highland, H.N., Solanki, H. and George, L. (2021) Extraction of Cellulose from Lignocellulosic Biomass. Ecology Environment and Conservation, 27, S358-S364.
https://www.researchgate.net/publication/350196339
[3]  Atici, O.G. and Tezcan, E. (2017) Isolation of Cellulose and Hemicellulose by Using Alkaline Peroxide Treatment at Room Temperature from Wasted Fall Leaves. Polymer International, 2, 100-110.
[4]  Sankaran, R., et al. (2021) The Expansion of Lignocellulose Biomass Conversion into Bioenergy via Nanobiotechnology. Frontiers in Nanotechnology, 3, 1-10.
https://doi.org/10.3389/fnano.2021.793528
[5]  Husin, M., Rahim, N., Ahmad, M.R., Romli, A.Z. and Ilham, Z. (2019) Hydrolysis of Microcrystalline Cellulose Isolated from Waste Seeds of Leucaena Leucocephala for Glucose Production. Malaysian Journal of Fundamental and Applied Sciences, 15, 200-205.
https://doi.org/10.11113/mjfas.v15n2.1165
[6]  Melesse, G.T., Hone, F.G. and Mekonnen, M.A. (2022) Extraction of Cellulose from Sugarcane Bagasse Optimization and Characterization. Advances in Materials Science and Engineering, 2022, Article ID: 1712207.
https://doi.org/10.1155/2022/1712207
[7]  Hapani, U., Highland, H. and George, L.B. (2020) Eco-Friendly Extraction and Characterization of Cellulose from Fenugreek (Trigonella foenum-gracum L.) Stem. Journal of Experimental Biology and Agricultural Sciences, 8, 479-488.
https://doi.org/10.18006/2020.8(4).479.488
[8]  Tocco, D., Carucci, C., Monduzzi, M., Salis, A. and Sanjust, E. (2021) Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Sustainable Chemistry & Engineering, 9, 2412-2432.
https://doi.org/10.1021/acssuschemeng.0c07266
[9]  Zendrato, H.M., Devi, Y.S., Masruchin, N. and Wistara, N.J. (2021) Soda Pulping of Torch Ginger Stem: Promising Source of Nonwood-Based Cellulose. The Journal of the Korean Wood Science and Technology, 49, 287-298.
https://doi.org/10.5658/WOOD.2021.49.4.287
[10]  Fišerová, M., Gigac, J. and Melník, P. (2006) Application of Anthraquinone in Kraft Pulping of Beech Wood. Wood Research, 51, 55-68.
[11]  Ferrer, A., Vargas, F., Jameel, H. and Rojas, O.J. (2015) Influence of Operating Variables and Model to Minimize the Use of Anthraquinone in the Soda-Anthraquinone Pulping of Barley Straw. BioResources, 10, 6442-6456.
https://doi.org/10.15376/biores.10.4.6442-6456
[12]  Mohd Hassan, N.H., Mohammad, N.A., Ibrahim, M., Mohd Yunus, N.Y. and Sarmin, S.N. (2020) Soda-Anthraquinone Pulping Optimization of Oil Palm Empty Fruit Bunch. BioResources, 15, 5012-5031.
https://doi.org/10.15376/biores.15.3.5012-5031
[13]  Thi, N., et al. (2022) Heliyon Cellulose from the Banana Stem : Optimization of Extraction by Response Surface Methodology (RSM) and Charaterization. Heliyon, 8, E11845.
https://doi.org/10.1016/j.heliyon.2022.e11845
[14]  Orwa, S.A., Mutua, C.A., Kindt, R. and Jamnadass, R. (2009) Grevillea robusta A. Cunn. ex R. Br. Proteaceae Grevillea robusta A. Cunn. ex R. Br. Database, 1-6.
[15]  Wamuragunda, T.W., Kuyah, S., Muthuri, C., Mwangi, P. and Sinclair, F. (2019) Journal of Agriculture, Science and Technology. Jagst, 19, 53-73.
[16]  Devaraj, P. and Sugavanam, V. (2006) Monograph on Silver Oak: Grevillea Robusta. International Book Distributors.
[17]  Temesgen, A.A. (2021) Modeling and Pulping Variables Optimization of Ethanol-Alkali Pulping and Delignification of Grevillea Robusta in Ethiopia by Response Surface Methodology. European Journal of Materials Science and Engineering, 6, 34-51.
https://doi.org/10.36868/ejmse.2021.06.01.034
[18]  Israel, A.U., Obot, I.B., Umoren, S.A., Mkpenie, V. and Asuquo, J.E. (2008) Production of Cellulosic Polymers from Agricultural Wastes. Journal of Chemistry, 5, 81-85.
https://doi.org/10.1155/2008/436356
[19]  Van Soest, P.J., Robertson, J.B. and Lewis, B.A. (1991) Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74, 3583-3597.
https://doi.org/10.3168/jds.S0022-0302(91)78551-2
[20]  Javier-Astete, R., Jimenez-Davalos, J. and Zolla, G. (2021) Determination of Hemicellulose, Cellulose, Holocellulose and Lignin Content Using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLOS ONE, 16, e0256559.
https://doi.org/10.1371/journal.pone.0256559
[21]  Amal, N., Mohamad, N. and Jai, J. (2022) Heliyon Response Surface Methodology for Optimization of Cellulose Extraction from Banana Stem Using NaOH-EDTA for Pulp and Papermaking. Heliyon, 8, E09114.
https://doi.org/10.1016/j.heliyon.2022.e09114
[22]  de Almeida, D.P. and Gomide, J.L. (2013) Anthraquinone and Surfactant Effect on Soda Pulping. O Papel, 74, 53-56.
https://www.researchgate.net/publication/290975563
[23]  L., Y., Ouattara, et al. (2022) Optimization of The Autoclave-Assisted Alkaline Delignification of Cocoa (Theobroma cacao) Pod Husks Using KOH to Maximize Reducing Sugars. BioResources, 17, 826-848.
https://doi.org/10.15376/biores.17.1.826-848
[24]  Sarwar Jahan, M., Nashir Uddin, M., Asif Rahman, M., Mostafizur Rahman, M. and Nurul Amin, M. (2016) Soda Pulping of Umbrella Palm Grass (Cyperus flabettiformic). Journal of Bioresources and Bioproducts, 1, 85-91.
https://doi.org/10.21967/jbb.v1i2.28
[25]  Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A. and Kargarzadeh, H. (2012) Extraction of Cellulose Nanocrystals from Mengkuang Leaves (Pandanus tectorius), Carbohydrate Polymers, 88, 772-779.
https://doi.org/10.1016/j.carbpol.2012.01.062
[26]  Diyana, Z.N., Jumaidin, R., Selamat, M.Z., Alamjuri, R.H. and Yusof, F.A.M. (2021) Extraction and Characterization of Natural Cellulosic Fiber from Pandanus amaryllifolius Leaves. Polymers, 13, Article 4171.
https://doi.org/10.3390/polym13234171
[27]  Maheswari, C.U., Muzenda, E., Shukla, M. and Rajulu, A.V. (2016) Extraction and Characterization of Cellulose from Pretreated Ficus (Peepal Tree) Leaf Fibers. Journal of Natural Fibers, 13, 54-64.
https://doi.org/10.1080/15440478.2014.984055
[28]  Kamaruddin, Z.H., Jumaidin, R., Rushdan, A.I., Selamat, M.Z. and Hanim Alamjuri, R. (2021) Characterization of Natural Cellulosic Fiber Isolated from Malaysian Cymbopogan Citratus Leaves. BioResources, 16, 7729-7750.
https://doi.org/10.15376/biores.16.4.7729-7750
[29]  Getacho, E. (2022) South African Journal of Chemical Engineering Response Surface Methodology Modeling, Experimental Validation and Optimization of Acid Hydrolysis Process Parameters for Nanocellulose Extraction. South African Journal of Chemical Engineering, 40, 176-185.
https://doi.org/10.1016/j.sajce.2022.03.003
[30]  Bonface, G.M., Benson, B.G., Urbanus, M., Paul, N., Bilhah, E. and Stephen, O (2020) Optimization of Microalgae Production Conditions Using Genetic Algorithm and Response Surface Methodology. J. Eng. Agric. Environ., 6, 40-60.
[31]  Bozaci, E. and Tağaç, A.A. (2023) Extraction and Characterization of New Cellulosic Fiber from Catalpa Bignonioides Fruits for Potential Use in Sustainable Products. Polymers, 15, Article 201.
https://doi.org/10.3390/polym15010201
[32]  Morán, J.I., Alvarez, V.A., Cyras, V.P. and Vázquez, A. (2008) Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers. Cellulose, 15, 149-159.
https://doi.org/10.1007/s10570-007-9145-9
[33]  Feleke, K., Thothadri, G., Tufa, H.B., Rajhi, A.A. and Ahmed, G.M.S. (2023) Extraction and Characterization of Fiber and Cellulose from Ethiopian Linseed Straw: Determination of Retting Period and Optimization of Multi-Step Alkaline Peroxide Process. Polymers, 15, Article 469.
https://doi.org/10.3390/polym15020469
[34]  Owi, W.T., Lin, O.H., Sam, S.T., Chia, C.H., et al. (2016) Comparative Study of Microcelluloses Isolated from Two Different Biomasses with Commercial Cellulose. BioResources, 11, 3453-3465.
https://doi.org/10.15376/biores.11.2.3453-3465
[35]  Romruen, O., Karbowiak, T., Tongdeesoontorn, W., Shiekh, K.A. and Rawdkuen, S. (2022) Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand. Polymers, 14, Article 1830.
https://doi.org/10.3390/polym14091830
[36]  Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. and Johnson, D.K. (2010) Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnology for Biofuels and Bioproducts, 3, Article No. 10.
https://doi.org/10.1186/1754-6834-3-10

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413