全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

众包测试研究综述
Research Review of Crowdsourcing Testing

DOI: 10.12677/sea.2024.133029, PP. 295-301

Keywords: 众包测试,激励机制,任务推荐,测试报告
Crowdsourced Testing
, Incentive Mechanism, Task Recommendation, Test Report

Full-Text   Cite this paper   Add to My Lib

Abstract:

众包测试利用众包和云平台优势,整合大规模的测试人员协同完成软件测试任务,有效解决了传统测试中人力资源不足以及无法大规模获取用户真实反馈的典型问题,从而获得更全面、多样化的测试结果。本文通过系统分析近年来众包测试研究文献,总结了众包测试的基本流程及其特点,重点梳理了众包平台激励机制、众包测试推荐机制以及测试报告自动生成三方面的关键技术,并完成了对现有技术的系统归纳与对比分析。最后,探讨了众包测试面临的挑战,如激励机制的动态调整、更个性化的任务推荐、根据报告生成测试用例等;并对未来的研究方向进行了展望,特别是在大语言模型辅助下带来的机遇与挑战。
Crowdsourcing testing uses the advantages of crowdsourcing and cloud platform to integrate large-scale testers to complete software testing tasks, effectively solving the typical problems of insufficient human resources in traditional testing and the inability to obtain real feedback from users on a large scale, so as to obtain more comprehensive and diversified test results. By systematically analyzing the research literature on crowdsourcing testing in recent years, this paper summarizes the basic process and characteristics of crowdsourcing testing, focuses on the key technologies of crowdsourcing platform incentive mechanism, crowdsourcing test recommendation mechanism and automatic generation of test reports, and completes the systematic induction and comparative analysis of existing technologies. Finally, the challenges of crowdsourcing testing are discussed, such as dynamic adjustment of incentive mechanisms, more personalized task recommendations, generating test cases based on reports, etc. The future research direction is also prospected, especially the opportunities and challenges brought by the aid of large language models.

References

[1]  Howe, J. (2006) The Rise of Crowdsourcing. Wired Magazine, 14, 1-4.
[2]  章晓芳, 冯洋, 刘頔, 等. 众包软件测试技术研究进展[J]. 软件学报, 2018, 29(1): 69-88.
[3]  Alyahya, S. (2020) Crowdsourced Software Testing: A Systematic Literature Review. Information and Software Technology, 127, Article ID: 106363.
https://doi.org/10.1016/j.infsof.2020.106363
[4]  傅彦铭, 朱杰夫, 蒋侃, 等. 移动众包中基于多约束工人择优的激励机制研究[J]. 计算机科学, 2022, 49(9): 275-282.
[5]  高丽萍, 孙明达, 高丽, 等. 移动众包环境下一种多阶段质量感知的在线激励机制[J]. 小型微型计算机系统, 2022, 43(5): 1102-1108.
[6]  王强, 陈世航, 徐佳. 隐私保护众包软件测试激励机制设计[J]. 南京理工大学学报, 2022, 46(4): 434-442.
[7]  成静, 薛峰, 张逸飞, 等. 移动应用众包测试人员信誉度的模糊评估方法研究[J]. 西北工业大学学报, 2018, 36(4): 800-806.
[8]  褚佳静. 众包中基于信誉模型的质量控制问题的研究[D]: [硕士学位论文]. 烟台: 烟台大学, 2023.
[9]  Wang, J., Wang, S., Chen, J., et al. (2019) Characterizing Crowds to Better Optimize Worker Recommendation in Crowdsourced Testing. IEEE Transactions on Software Engineering, 47, 1259-1276.
https://doi.org/10.1109/TSE.2019.2918520
[10]  Cui, Q., Wang, J., Yang, G., et al. (2017) Who Should Be Selected to Perform a Task in Crowdsourced Testing? Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, 4-8 July 2017, 75-84.
https://doi.org/10.1109/COMPSAC.2017.265
[11]  蒋竞, 平源, 吴秋迪, 等. 开源社区众包任务的开发者推荐方法[J]. 计算机科学, 2022, 49(12): 99-108.
[12]  马华, 陈跃鹏, 黄卓轩, 等. 支持工人能力模糊度量和角色协同的软件众包任务分配[J]. 国防科技大学学报, 2022, 44(5): 124-133.
[13]  成静, 王威, 帅正义. 基于深度学习的移动应用众包测试智能推荐算法[J]. 西北工业大学学报, 2021, 39(5): 1049-1056.
[14]  沈旭, 王淑营, 田媛梦, 等. 基于知识图谱和图注意力的众包任务推荐算法[J]. 计算机应用研究, 2023, 40(1): 115-121.
[15]  袁宇宸. 基于胶囊网络的众包推荐方法研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2023.
[16]  Zhu, P., Li, Y., Li, T., et al. (2022) Advanced Crowdsourced Test Report Prioritization Based on Adaptive Strategy. IEEE Access, 10, 53522-53532.
https://doi.org/10.1109/ACCESS.2022.3176086
[17]  童瑶. 面向移动应用的众包测试报告排序技术研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2022.
[18]  Yu, S., Fang, C., Cao, Z., et al. (2021) Prioritize Crowdsourced Test Reports via Deep Screenshot Understanding. Proceedings of the 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), Madrid, 22-30 May 2021, 946-956.
https://doi.org/10.1109/ICSE43902.2021.00090
[19]  Hao, R., Feng, Y., Jones, J.A., et al. (2019) CTRAS: Crowdsourced Test Report Aggregation and Summarization. Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, 25-31 May 2019, 900-911.
https://doi.org/10.1109/ICSE.2019.00096
[20]  Jiang, H., Chen, X., He, T., et al. (2018) Fuzzy Clustering of Crowdsourced Test Reports for Apps. ACM Transactions on Internet Technology, 18, 1-28.
https://doi.org/10.1145/3106164
[21]  Yu, S., Fang, C., Zhang, Q., et al. (2023) Mobile App Crowdsourced Test Report Consistency Detection via Deep Image-and-Text Fusion Understanding. IEEE Transactions on Software Engineering, 49, 4115-4134.
https://doi.org/10.1109/TSE.2023.3285787

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133