全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

科威特北部油田钻完井工程技术进展
Technical Progress of Drilling and Completion Engineering in Northern Kuwait Oil Field

DOI: 10.12677/jogt.2024.462034, PP. 275-284

Keywords: Raudhatain和Sabiriyah,油藏,钻完井,快速建产,水平井,探索
Raudhatain and Sabiriyah
, Oil Reservoir, Drilling and Completing Wells, Rapid Production, Horizontal Well, Explore

Full-Text   Cite this paper   Add to My Lib

Abstract:

Raudhatain和Sabiriyah油田属于科威特北部深层砂岩油田,主要产油层为三角洲Burgan组砂岩、Zubair以及Mauddud地层的浅海碳酸盐岩,相比于科威特南部,钻完井及排采系列工程技术面临钻井周期偏长、井筒流动规律复杂等挑战。针对复杂的地质挑战,不断深化地质认识,深度融合油藏地质与工程技术,围绕快速建产,持续攻关钻采工程工艺,历经三轮探索优化,钻井技术强化,减少井下复杂风险,缩短钻井周期,运用排井钻机施工减少搬迁时间;排采工艺基于不同层位完井方案,形成排井模块式工艺决策方法,最终形成了以“精细轨迹控制优快钻进”、“水平井各向异性中靶目的层”、“注水加快有效排采”为核心的工程技术序列,为科威特深层油气工程技术发展积累了宝贵经验,也为下一步优化开发方案提供了探索方向。
The Raudhatain and Sabiriyah fields are deep sandstone fields in Northern Kuwait, mainly producing shallow Marine carbonate rocks in the Delta Burgan Formation, Zubair and Mauddud formations. The engineering technologies of drilling, completion and production are faced with such challenges as long drilling cycle and complex wellbore fluid flow. In response to complex geological challenges, we continue to deepen geological understanding, deeply integrate reservoir geology and engineering technology, focus on rapid production construction, continue to tackle drilling and production engineering technology, after three rounds of exploration and optimization, strengthen drilling technology, reduce complex downhole risks, shorten drilling cycle, and reduce relocation time by using Pad-well drilling rig construction; the Pad-well and production process is based on the completion plan of different formations, forming a modular process decision method of Pad-well, and finally forming an engineering technology sequence with the integration of “precisely trajectory control optimal fast drilling”, “horizontal well anisotropic target zone”, and “water injection accelerated and effective Pad-well and production”, which has accumulated valuable experience for the development of deep oil and gas engineering technology in Kuwait. It also provides the exploration direction for the next step to optimize the development scheme.

References

[1]  Cross, N., Goodall, I., Hollis, C., Burchette, T., Al-Ajmi, H.Z.D., Johnson, I.G., et al. (2010) Reservoir Description of a Mid-Cretaceous Siliciclastic-Carbonate Ramp Reservoir: Mauddud Formation in the Raudhatain and Sabiriyah Fields, North Kuwait. GeoArabia, 15, 17-50.
https://doi.org/10.2113/geoarabia150217
[2]  王一帆, 白国平. 中阿拉伯盆地油气分布规律和主控因素研究[J]. 沉积与特提斯地质, 2014, 34(2): 104-112.
[3]  张金成, 孙连忠, 王甲昌, 等. “井工厂”技术在我国非常规油气开发中的应用[J]. 石油钻探技术, 2014, 42(1): 20-25.
[4]  邱春阳, 秦涛, 王宝田, 等. 准噶尔盆地中部4区块侏罗系井壁稳定钻井液技术[J]. 钻采工艺, 2015, 38(5): 77-80.
[5]  刘向君, 丁乙, 罗平亚, 等. 钻井卸载对泥页岩地层井壁稳定性的影响[J]. 石油钻探技术, 2018, 46(1): 10-16.
[6]  周顺林, 尹帅, 王凤琴, 等. 应力对泥页岩储层脆性影响的试验分析及应用[J]. 石油钻探技术, 2017, 45(3): 113-120.
[7]  Heffer, K., Greenhough, J., Main, I., Zhang, X., Mohamad Hussein, A., Nasreldin, G., et al. (2010) Low-Cost Monitoring of Inter-Well Reservoir Communication Paths through Correlations in Well Rate Fluctuations: Case Studies from Mature Fields in the North Sea. Proceedings of SPE EUROPEC/EAGE Annual Conference and Exhibition, Barcelona, 14-17 June 2010, SPE-130734-MS.
https://doi.org/10.2523/130734-ms
[8]  Koutsabeloulis, N.C. and Hope, S.A. (1998) “Coupled” Stress/Fluid/Thermal Multi-Phase Reservoir Simulation Studies Incorporating Rock Mechanics. SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim, 8-10 July 1998, SPE-47393-MS.
https://doi.org/10.2118/47393-ms
[9]  Milton, D.I. and Davies, C.C.S. (1965) Exploration and Development of the Raudhatain Field. Journal of the Institute of Petroleum, 51, 17-28.
[10]  贾虎, 邓力珲. 基于流线聚类人工智能方法的水驱油藏流场识别[J]. 石油勘探与开发, 2018, 45(2): 312-319.
[11]  侯春华. 基于长短期记忆神经网络的油田新井产油量预测方法[J]. 油气地质与采收率, 2019, 26(3): 105-110.
[12]  骞宇澄, 刘昭策. 深度学习的实现与发展从神经网络到机器学习[J]. 电子技术与软件工程, 2017(11): 30-31.
[13]  刘伟, 闫娜. 人工智能在石油工程领域应用及影响[J]. 石油科技论坛, 2018, 37(4): 32-40.
[14]  闵超, 代博仁, 张馨慧, 等. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 1-15.
[15]  黄艳, 马辉运, 蔡道钢, 等. 国外采气工程技术现状及发展趋势[J]. 钻采工艺, 2008, 31(6): 52-55.
[16]  李燕, 胡志强, 薛玉志, 等. 基于日费制管理模式的彬4井钻井关键技术[J]. 石油钻探技术, 2022, 50(3): 34-38.
[17]  路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术, 2021, 49(1): 1-10.
[18]  尹慧博, 索忠伟, 李博东, 等. 沙特HWY区块HWY-116井提速技术[J]. 石油钻探技术, 2020, 48(5): 34-38.
[19]  刘书斌, 倪红坚, 张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术, 2020, 48(5): 69-76.
[20]  杨进. 深水油气井表层导管下入深度计算方法[J]. 石油学报, 2019, 40(11): 1396-1406.
[21]  王兴文, 缪尉杰, 何新星, 等. 川南威荣气田深层页岩气工程技术进展[J]. 石油实验地质, 2023, 45(6): 1170-1177.
[22]  何立成, 唐波. 准噶尔盆地超深井钻井技术现状与发展建议[J]. 石油钻探技术, 2022, 50(5): 1-8.
[23]  崔瑞康, 孙建孟, 刘行军, 等. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413