全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数字孪生和聚类算法的采煤机数据异常识别研究
Research on Coal Mining Machine Data Anomaly Identification Based on Digital Twin and Clustering Algorithm

DOI: 10.12677/sea.2024.133039, PP. 384-391

Keywords: 数字孪生,聚类算法,异常数据识别,煤矿采煤机,数据采集
Digital Twin
, Clustering Algorithm, Anomalous Data Identification, Coal Mining Machine, Data Collection

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对煤矿采煤机数字孪生模型构建中数据采集的精确性问题,提出了一种基于数字孪生和改进的R-DBSCAN聚类算法的采煤机数据异常识别方法。该方法首先建立了采煤机的数字孪生模型,通过采用改进的R-DBSCAN算法进行异常数据识别。改进算法通过K-dist图自适应地确定了DBSCAN算法的参数,从而提高了对异常数据的识别效果。实验结果表明,该算法相比其他聚类算法,能更准确地识别采煤机异常数据,进而使采煤机数字孪生模型构建的准确性和有效性得到提高。
In this paper, a coal mining machine data anomaly identification method based on digital twin and improved R-DBSCAN clustering algorithm is proposed for the accuracy of data collection in the construction of digital twin model of coal mining machine. The method first establishes the digital twin model of coal mining machine and carries out abnormal data identification by using the improved R-DBSCAN algorithm. The improved algorithm adaptively determines the parameters of the DBSCAN algorithm through K-dist graph, thereby improving the recognition effect of abnormal data. Empirical tests have revealed that the suggested algorithm can more accurately recognize the abnormal data of coal mining machine compared with other clustering algorithms, which in turn leads to the improvement of the accuracy and effectiveness of the construction of a digital twin model of coal mining machine.

References

[1]  李文杰, 闫世强, 蒋莹等. 自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2019, 55(5): 1-7+148.
[2]  周治平, 王杰锋, 朱书伟, 孙子文. 一种改进的自适应快速AF-DBSCAN聚类算法[J]. 智能系统学报, 2016, 11(1): 93-98.
[3]  陈文龙, 时宏伟. 基于KD树改进的DBSCAN聚类算法[J]. 计算机系统应用, 2022, 31(2): 305-310.
[4]  冀汶莉, 郗刘涛, 王斌. 面向不平衡数据集的煤矿监测系统异常数据识别方法[J]. 工矿自动化, 2020, 46(1): 18-25.
https://doi.org/10.13272/j.issn.1671-251x.17502
[5]  张朋. 基于聚类分析的矿震时序预测方法研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2023.
[6]  武昊. 基于空间密度聚类的钢铁能源数据异常检测[D]: [硕士学位论文]. 大连: 大连理工大学, 2022.
https://doi.org/10.26991/d.cnki.gdllu.2022.000770
[7]  田震, 荆双喜, 赵丽娟, 等. 采煤机噪声与振动特性研究[J]. 工矿自动化, 2019, 45(3): 23-28.
https://doi.org/10.13272/j.issn.1671-251x.2018090032
[8]  雷萌. 基于非监督聚类学习的风电机组异常数据识别[D]: [硕士学位论文]. 北京: 华北电力大学(北京), 2022.
https://doi.org/10.27140/d.cnki.ghbbu.2022.001166
[9]  雷萌, 郭鹏, 刘博嵩. 基于自适应DBSCAN算法的风电机组异常数据识别研究[J]. 动力工程学报, 2021, 41(10): 859-865.
https://doi.org/10.19805/j.cnki.jcspe.2021.10.007
[10]  Qian, J., Zhou, Y., Han, X. and Wang, Y. (2024) MDBSCAN: A Multi-Density DBSCAN Based on Relative Density. Neurocomputing, 576, Article ID: 127329-.
https://doi.org/10.1016/j.neucom.2024.127329
[11]  Bo, Q., Lv, Z., Wang, Q. and Li, Z. (2024) Predication of the Post Mining Land Use Based on Random Forest and DBSCAN. PLOS ONE, 19, e0287079.
https://doi.org/10.1371/journal.pone.0287079
[12]  经海翔, 黄友锐, 徐善永, 等. 基于数字孪生和概率神经网络的矿用通风机预测性故障诊断研究[J]. 工矿自动化, 2021, 47(11): 53-60.
https://doi.org/10.13272/j.issn.1671-251x.17852
[13]  殷丽凤. 一种基于X-DBSCAN算法的客户细分方法[P]. 中国专利, 117056761. 2023-11-14.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133