全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

二氢吡咯里嗪化合物的合成研究进展
Research Progress in the Synthesis of DihydropyrrolizineCompounds

DOI: 10.12677/jocr.2024.122039, PP. 406-420

Keywords: 二氢吡咯里嗪衍生物,分子内环化反应,分子间环加成反应
Dihydropyrrolizine Compounds
, Intermolecular Cyclization Reactions, Intermolecular Cycloaddition Reactions

Full-Text   Cite this paper   Add to My Lib

Abstract:

二氢吡咯里嗪骨架是由两个稠合的吡咯环组成的双环体系,广泛存在于许多天然产物、药物分子以及人工合成的化合物中,因此,发展高效合成二氢吡咯里嗪骨架的方法具有良好的研究价值和应用前景。目前以吡咯或四氢吡咯衍生物为原料合成二氢吡咯里嗪衍生物的方法主要有两种:一种是通过分子内环化反应来构建二氢吡咯里嗪骨架;另一种是通过分子间环加成反应来合成此类化合物。本文中主要介绍了一些二氢吡咯里嗪化合物的应用以及二氢吡咯里嗪化合物的合成方法,为这一类化合物的合成研究提供一定基础。
The dihydropyrrolizine framework is a bicyclic system composed of two fused pyrrole rings, widely present in many natural products, drug molecules, and compounds synthesized artificially. Therefore, the development of efficient methods for synthesizing dihydropyrrolizine moiety holds significant research value and application prospects. Currently, there are two main methods for synthesizing dihydropyrrolizine compounds from pyrrole or tetrahydropyrrole derivatives: one is to construct this framework through intramolecular cyclization reactions, while another approach is to synthesize such compounds through intermolecular cycloaddition reactions. This review mainly introduces the applications of some dihydropyrazine compounds and the synthesis methods of dihydropyrazine compounds, providing a certain foundation for the synthesis research of this type of compound.

References

[1]  Hoang, L.S., Tran, M.H., Lee, J.S., To, D.C., Nguyen, V.T., Kim, J.A., et al. (2015) Anti-inflammatory Activity of Pyrrolizidine Alkaloids from the Leaves of Madhuca pasquieri (dubard). Chemical & Pharmaceutical Bulletin, 63, 481-484.
https://doi.org/10.1248/cpb.c14-00855
[2]  Tsukamoto, S., Tane, K., Ohta, T., Matsunaga, S., Fusetani, N. and van Soest, R.W.M. (2001) Four New Bioactive Pyrrole-Derived Alkaloids from the Marine Sponge Axinellabrevistyla. Journal of Natural Products, 64, 1576-1578.
https://doi.org/10.1021/np010280b
[3]  Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. and Sharma, P. (2015) Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics. RSC Advances, 5, 15233-15266.
https://doi.org/10.1039/c4ra15710a
[4]  Yee, S.B., Kinser, S., Hill, D.A., Barton, C.C., Hotchkiss, J.A., Harkema, J.R., et al. (2000) Synergistic Hepatotoxicity from Coexposure to Bacterial Endotoxin and the Pyrrolizidine Alkaloid Monocrotaline. Toxicology and Applied Pharmacology, 166, 173-185.
https://doi.org/10.1006/taap.2000.8968
[5]  Narayanan, N.K., Nargi, D., Attur, M., et al. (2007) Anticancer Effects of Licofelone (ML-3000) in Prostate Cancer Cells. Anti-Cancer Research, 27, 2393-2402.
[6]  Jonas, R., Klockow, M., Lues, I., Prücher, H., Schliep, H. and Wurziger, H. (1993) Synthesis and Biological Activities of Meribendan and Related Heterocyclic Benzimidazolo-Pyridazinones. European Journal of Medicinal Chemistry, 28, 129-140.
https://doi.org/10.1016/0223-5234(93)90005-y
[7]  Gouda, A.M., Abdelazeem, A.H., Arafa, E.A. and Abdellatif, K.R.A. (2014) Design, Synthesis and Pharmacological Evaluation of Novel Pyrrolizine Derivatives as Potential Anticancer Agents. Bioorganic Chemistry, 53, 1-7.
https://doi.org/10.1016/j.bioorg.2014.01.001
[8]  Niwa, H., Ogawa, T., Okamoto, O. and Yamada, K. (1991) Alkylation of Nucleosides by Dehydromonocrotaline, the Putative Toxic Metabolite of the Carcinogenic Pyrrolizidine Alkaloid Monocrotaline. Tetrahedron Letters, 32, 927-930.
https://doi.org/10.1016/s0040-4039(00)92122-1
[9]  Li, W., Wang, K., Lin, G., Peng, Y. and Zheng, J. (2016) Lysine Adduction by Reactive Metabolite(s) of Monocrotaline. Chemical Research in Toxicology, 29, 333-341.
https://doi.org/10.1021/acs.chemrestox.5b00488
[10]  Rooks, W.H., Tomolonis, A.J., Maloney, P.J., Wallach, M.B. and Schuler, M.E. (1982) The Analgesic and Anti-Inflammatory Profile of (±)-5-Benzoyl-1, 2-Dihydro-3H-Pyrrolo[1, 2a]Pyrrole-1-Carboxylic Acid (RS-37619). Agents and Actions, 12, 684-690.
https://doi.org/10.1007/bf01965079
[11]  Alanazi, F.K., Abdel Rahman, A.A., Mahrous, G.M. and Alsarra, I.A. (2007) Formulation and Physicochemical Characterisation of Buccoadhesive Films Containing Ketorolac. Journal of Drug Delivery Science and Technology, 17, 183-192.
https://doi.org/10.1016/s1773-2247(07)50034-1
[12]  Liedtke, A.J., Keck, P.R.W.E.F., Lehmann, F., Koeberle, A., Werz, O. and Laufer, S.A. (2009) Arylpyrrolizines as Inhibitors of Microsomal Prostaglandin E2 Synthase-1 (mPGES-1) or as Dual Inhibitors of mPGES-1 and 5-Lipoxygenase (5-LOX). Journal of Medicinal Chemistry, 52, 4968-4972.
https://doi.org/10.1021/jm900481c
[13]  Shahraki, F.N., Momtaz, S., Baeeri, M., Khayatan, D., Lashgari, N., Roudsari, N.M., et al. (2023) Licofelone Attenuates Acetic Acid-Induced Colitis in Rats through Suppression of the Inflammatory Mediators. Inflammation, 46, 1709-1724.
https://doi.org/10.1007/s10753-023-01835-0
[14]  Hanna, M.M., Abdelgawad, N.M., Ibrahim, N.A. and Mohammed, A.B. (2011) Synthesis and Antitumor Evaluation of Some Novel Pyrrolizine Derivatives. Medicinal Chemistry Research, 21, 2349-2362.
https://doi.org/10.1007/s00044-011-9761-7
[15]  Tavolari, S., Bonafè, M., Marini, M., Ferreri, C., Bartolini, G., Brighenti, E., et al. (2007) Licofelone, a Dual COX/5-LOX Inhibitor, Induces Apoptosis in HCA-7 Colon Cancer Cells through the Mitochondrial Pathway Independently from Its Ability to Affect the Arachidonic Acid Cascade. Carcinogenesis, 29, 371-380.
https://doi.org/10.1093/carcin/bgm265
[16]  Mohammed, A., Janakiram, N.B., Li, Q., Choi, C., Zhang, Y., Steele, V.E., et al. (2011) Chemoprevention of Colon and Small Intestinal Tumorigenesis in Apcmin/+ Mice by Licofelone, a Novel Dual 5-LOX/COX Inhibitor: Potential Implications for Human Colon Cancer Prevention. Cancer Prevention Research, 4, 2015-2026.
https://doi.org/10.1158/1940-6207.capr-11-0233
[17]  Liu, W., Zhou, J., Bensdorf, K., Zhang, H., Liu, H., Wang, Y., et al. (2011) Investigations on Cytotoxicity and Anti-Inflammatory Potency of Licofelone Derivatives. European Journal of Medicinal Chemistry, 46, 907-913.
https://doi.org/10.1016/j.ejmech.2011.01.002
[18]  Guo, S., Zhao, Y., Zhao, X., Zhang, S., Xie, L., Kong, W., et al. (2007) Synthesis and Anti‐tumor Activities of Novel Methylthio‐, Sulfinyl‐, and Sulfonyl‐8H‐Thieno[2, 3‐b]Pyrrolizin‐8‐Oximino Derivatives. Archiv der Pharmazie, 340, 416-423.
https://doi.org/10.1002/ardp.200700044
[19]  Guo, S. (2008) Synthesis and Biological Evaluation of Novel Tricyclic Oximino Derivatives as Antitumor Agents. Chemical Research in Chinese Universities, 24, 47-53.
https://doi.org/10.1016/s1005-9040(08)60011-2
[20]  Perry, C.K. and Lindsley, C.W. (2019) Total Synthesis of Punicagranine. Tetrahedron Letters, 60, Article ID: 150989.
https://doi.org/10.1016/j.tetlet.2019.150989
[21]  Robinson, R.S., Dovey, M.C. and Gravestock, D. (2005) Silver‐Catalyzed Hydroamination: Synthesis of N‐Bridgehead Pyrroles, Incorporating a Protection‐Deprotection Strategy for Preparation of Cyclic Secondary Vinylogous Carbamates. European Journal of Organic Chemistry, 2005, 505-511.
https://doi.org/10.1002/ejoc.200400598
[22]  Unaleroglu, C. and Yazici, A. (2007) Gadolinium Triflate Catalyzed Alkylation of Pyrroles: Efficient Synthesis of 3-Oxo-2, 3-Dihydro-1H-Pyrrolizine Derivatives. Tetrahedron, 63, 5608-5613.
https://doi.org/10.1016/j.tet.2007.04.018
[23]  Deb, I. and Seidel, D. (2010) Retro-claisen Condensation versus Pyrrole Formation in Reactions of Amines and 1, 3-Diketones. Tetrahedron Letters, 51, 2945-2947.
https://doi.org/10.1016/j.tetlet.2010.03.086
[24]  Lu, S., Wang, W., Gao, P., Zhang, W. and Tu, Z. (2012) Photoinduced Chlorine Atom-Transfer Cyclization/Photohydrolysis of 3-Acyl-2-Chloro-N-(ω-Phenylalkynyl)pyrroles: A One-Pot Synthesis of Benzoyl-Substituted Fused Pyrroles. Organic & Biomolecular Chemistry, 10, 232-235.
https://doi.org/10.1039/c1ob05954h
[25]  Yan, Z.Y., Xiao, Y. and Zhang, L. (2012) Gold-Catalyzed One-Step Construction of 2, 3-Dihydro-1H-Pyrrolizines with an Electron-Withdrawing Group in the 5-Position: A Formal Synthesis of 7-Methoxymitosene. Angewandte Chemie International Edition, 51, 8624-8627.
https://doi.org/10.1055/s-0032-1317356
[26]  Nebe, M.M., Kucukdisli, M. and Opatz, T. (2016) 3, 4-Dihydro-2H-Pyrrole-2-Carbonitriles: Useful Intermediates in the Synthesis of Fused Pyrroles and 2, 2’-Bipyrroles. The Journal of Organic Chemistry, 81, 4112-4121.
https://doi.org/10.1021/acs.joc.6b00393
[27]  Stark, D.G., Williamson, P., Gayner, E.R., Musolino, S.F., Kerr, R.W.F., Taylor, J.E., et al. (2016) Isothiourea-Catalysed Enantioselective Pyrrolizine Synthesis: Synthetic and Computational Studies. Organic & Biomolecular Chemistry, 14, 8957-8965.
https://doi.org/10.1039/c6ob01557c
[28]  Miaskiewicz, S., Gaillard, B., Kern, N., Weibel, J., Pale, P. and Blanc, A. (2016) Gold(i)‐Catalyzed N‐Desulfonylative Amination versus N‐to‐O 1, 5‐sulfonyl Migration: A Versatile Approach to 1‐Azabicycloalkanes. Angewandte Chemie International Edition, 55, 9088-9092.
https://doi.org/10.1002/anie.201604329
[29]  Lange, M., Zi, Y. and Vilotijevic, I. (2019) Enantioselective Synthesis of Pyrrolizin-1-Ones via Lewis Base Catalyzed N-Allylation of N-Silyl Pyrrole Latent Nucleophiles. The Journal of Organic Chemistry, 85, 1259-1269.
https://doi.org/10.1021/acs.joc.9b02819
[30]  Klipkov, A.A., Sorochinsky, A.E., Tarasenko, K.V., Rusanova, J.A. and Gerus, I.I. (2020) Synthesis of Trifluoromethyl and Trifluoroacetyl Substituted Dihydropyrrolizines and Tetrahydroindolizines. Tetrahedron Letters, 61, Article ID: 151633.
https://doi.org/10.1016/j.tetlet.2020.151633
[31]  Wu, X., Xiao, G., Ding, Y., Zhan, Y., Zhao, Y., Chen, R., et al. (2020) Palladium-Catalyzed Intermolecular Polarity-Mismatched Addition of Unactivated Alkyl Radicals to Unactivated Alkenes. ACS Catalysis, 10, 14107-14116.
https://doi.org/10.1021/acscatal.0c04013
[32]  Klintworth, R., Morgans, G.L., Scalzullo, S.M., et al. (2021) Silica Gel and Microwave-Promoted Synthesis of Dihydropyrrolizines and Tetrahydroindolizines from Enaminones. Beilstein Journal of Organic Chemistry, 17, 2543-2552.
[33]  Scalzullo, S.M., Morgans, G.L., Klintworth, R., de Koning, C.B., Fernandes, M.A., van Otterlo, W.A.L., et al. (2024) Chromenone‐Fused Pyrrolizines and Pyrrolizine Analogues of Lamellarins: Expanding the Lamellarin Family. European Journal of Organic Chemistry, 27, e202301230.
https://doi.org/10.1002/ejoc.202301230
[34]  Bae, J., Lee, H., Youn, S., Kwon, S. and Cho, C. (2010) Organocatalytic Asymmetric Synthesis of Chiral Pyrrolizines by Cascade Conjugate Addition-Aldol Reactions. Organic Letters, 12, 4352-4355.
https://doi.org/10.1021/ol101811c
[35]  Zheng, Z., Tu, H. and Zhang, L. (2014) One‐pot Synthesis of Fused Pyrroles through a Key Gold‐Catalysis‐Triggered Cascade. ChemistryA European Journal, 20, 2445-2448.
https://doi.org/10.1002/chem.201304204
[36]  Gu, Y., Hu, P., Ni, C. and Tong, X. (2015) Phosphine-catalyzed Addition/Cycloaddition Domino Reactions of Β’-Acetoxy Allenoate: Highly Stereoselective Access to 2-Oxabicyclo[3.3.1]Nonane and Cyclopenta[a]Pyrrolizine. Journal of the American Chemical Society, 137, 6400-6406.
https://doi.org/10.1021/jacs.5b03273
[37]  Sugimoto, K., Yamamoto, N., Tominaga, D. and Matsuya, Y. (2015) Three-Component Domino Process for the Pyrrolizine Skeleton via [3 + 2]-Cycloaddition-Enamine Cyclization Triggered by a Gold Catalyst. Organic Letters, 17, 1320-1323.
https://doi.org/10.1021/acs.orglett.5b00320
[38]  Zheng, K., Shu, W., Ma, J., Wu, Y. and Wu, A. (2016) Acid-Mediated N-H/α, β-C(sp3)–h Trifunctionalization of Pyrrolidine: Intermolecular [3 + 2] Cycloaddition for the Construction of 2, 3-Dihydro-1H-Pyrrolizine Derivatives. Organic Letters, 18, 3526-3529.
https://doi.org/10.1021/acs.orglett.6b01369
[39]  Shirsat, P.K., Khomane, N.B., Mali, P.R., Maddi, R.R., Nanubolu, J.B. and Meshram, H.M. (2017) Multicomponent Methanolysis Reaction for the Synthesis Pyrrole and Pyrolizine Derivatives via Intermolecular (3 + 2) Cycloaddition. ChemistrySelect, 2, 11218-11222.
https://doi.org/10.1002/slct.201702729
[40]  Kallweit, I. and Schneider, C. (2019) Br?nsted Acid Catalyzed [6 + 2]-Cycloaddition of 2-Vinylindoles with in Situ Generated 2-Methide-2H-Pyrroles: Direct, Catalytic, and Enantioselective Synthesis of 2, 3-Dihydro-1H-Pyrrolizines. Organic Letters, 21, 519-523.
https://doi.org/10.1021/acs.orglett.8b03833
[41]  Kowalska, J., ?ukasik, B., Frankowski, S., Sieroń, L. and Albrecht, ?. (2022) Vinylogous Hydrazone Strategy in Stereoselective Synthesis of 2, 3‐Dihydro‐1H‐Pyrrolizines—An Organocatalytic, Metal‐Free Route to Ketorolac. Advanced Synthesis & Catalysis, 364, 3607-3616.
https://doi.org/10.1002/adsc.202200727
[42]  Hao, L., Liu, X., Yi, D., Wang, Y., Yu, X., Ma, Z., et al. (2023) The [3 + 2] Cycloaddition Reaction of N-Substituted Pyrrole-2-Carboxaldehydes with Arylalkenes under Copper Catalysis: Access to Dihydropyrrolizine Skeletons. Organic Letters, 25, 9136-9141.
https://doi.org/10.1021/acs.orglett.3c03558

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413