全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Monte Carlo Simulations of Doping Properties of a Spin-3/2 Ising Nanotube

DOI: 10.4236/wjcmp.2024.143006, PP. 51-65

Keywords: Doped Ising Nanotube, Monte Carlo Simulations, Compensation Point, Phase Transitions, Coercive Field

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of spin-1 impurities doping on the magnetic properties of a spin-3/2 Ising nanotube is investigated using Monte Carlo simulations within the Blume-Emery-Griffiths model in the presence of an external magnetic field. The thermal behaviors of the order parameters and different macroscopic instabilities as well as the hysteretic behavior of the material are examined in great detail as a function of the dopant density. It is found that the impurities concentration affects all the system magnetic properties generating for some specific values, compensation points and multi-cycle hysteresis. Doping conditions where the saturation/remanent magnetization and coercive field of the investigated material can be modified for permanent or soft magnets synthesis purpose are discussed.

References

[1]  Skomski, R. (2003) Nanomagnetics. Journal of Physics: Condensed Matter, 15, R841-R896.
https://doi.org/10.1088/0953-8984/15/20/202
[2]  Zou, Y., Klich, I. and Refael, G. (2008) Effect of Inhomogeneous Coupling on BCS Superconductors. Physical Review B, 77, Article ID: 144523.
https://doi.org/10.1103/physrevb.77.144523
[3]  Kim, J., Park, S., Lee, J.E., Jin, S.M., Lee, J.H., Lee, I.S., et al. (2006) Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angewandte Chemie International Edition, 45, 7754-7758.
https://doi.org/10.1002/anie.200602471
[4]  López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G. and Nogués, J. (2015) Applications of Exchange Coupled Bi-Magnetic Hard/Soft and Soft/Hard Magnetic Core/Shell Nanoparticles. Physics Reports, 553, 1-32.
https://doi.org/10.1016/j.physrep.2014.09.007
[5]  Kodama, R.H., Berkowitz, A.E., McNiff Jr., E.J. and Foner, S. (1996) Surface Spin Disorder in NiFe2O4 Nanoparticles. Physical Review Letters, 77, 394-397.
https://doi.org/10.1103/physrevlett.77.394
[6]  Hayashi, T., Hirono, S., Tomita, M. and Umemura, S. (1996) Magnetic Thin Films of Cobalt Nanocrystals Encapsulated in Graphite-Like Carbon. Nature, 381, 772-774.
https://doi.org/10.1038/381772a0
[7]  Wegrowe, J.E., Kelly, D., Jaccard, Y., Guittienne, P. and Ansermet, J.P. (1999) Current-Induced Magnetization Reversal in Magnetic Nanowires. Europhysics Letters (EPL), 45, 626-632.
https://doi.org/10.1209/epl/i1999-00213-1
[8]  Fert, A. and Piraux, L. (1999) Magnetic Nanowires. Journal of Magnetism and Magnetic Materials, 200, 338-358.
https://doi.org/10.1016/s0304-8853(99)00375-3
[9]  McGary, P.D., Tan, L., Zou, J., Stadler, B.J.H., Downey, P.R. and Flatau, A.B. (2006) Magnetic Nanowires for Acoustic Sensors (Invited). Journal of Applied Physics, 99, Article ID: 08B310.
https://doi.org/10.1063/1.2167332
[10]  Mananghaya, M.R. (2012) Carbon Nanotubes Doped with Nitrogen, Pyridine-Like Nitrogen Defects, and Transition Metal Atoms. Journal of the Korean Chemical Society, 56, 34-46.
https://doi.org/10.5012/jkcs.2012.56.1.034
[11]  Bhushan, B., Das, D., Priyam, A., Vasanthacharya, N.Y. and Kumar, S. (2012) Enhancing the Magnetic Characteristics of BiFeO3 Nanoparticles by Ca, Ba Co-Doping. Materials Chemistry and Physics, 135, 144-149.
https://doi.org/10.1016/j.matchemphys.2012.04.037
[12]  Apostolova, I., Apostolov, A. and Wesselinowa, J. (2023) Magnetic, Optical and Phonon Properties of Ion-Doped MgO Nanoparticles. Application for Magnetic Hyperthermia. Materials, 16, Article 2353.
https://doi.org/10.3390/ma16062353
[13]  Manglam, M.K., Shukla, A., Mallick, J., Yadav, M.K., Kumari, S., Zope, M., et al. (2022) Enhancement of Coercivity of M-Type Barium Hexaferrite by Ho Doping. Materials Today: Proceedings, 59, 149-152.
https://doi.org/10.1016/j.matpr.2021.10.365
[14]  Suenaga, K., Johansson, M.P., Hellgren, N., Broitman, E., Wallenberg, L.R., Colliex, C., et al. (1999) Carbon Nitride Nanotubulite—Densely-Packed and Well-Aligned Tubular Nanostructures. Chemical Physics Letters, 300, 695-700.
https://doi.org/10.1016/s0009-2614(98)01425-0
[15]  Droppa Jr., R., Ribeiro, C.T.M., Zanatta, A.R., dos Santos, M.C. and Alvarez, F. (2004) Comprehensive Spectroscopic Study of Nitrogenated Carbon Nanotubes. Physical Review B, 69, Article ID: 045405.
https://doi.org/10.1103/PhysRevB.69.045405
[16]  Zhang, X., Cui, C., Zheng, Q., Wang, Y., Chang, J. and Wang, S. (2021) Development of Highly Efficient and Reusable Magnetic Nitrogen-Doped Carbon Nanotubes for Chlorophenol Removal. Environmental Science and Pollution Research, 28, 37424-37434.
https://doi.org/10.1007/s11356-021-13302-0
[17]  Alivov, Y., Singh, V., Ding, Y., Cerkovnik, L.J. and Nagpal, P. (2014) Doping of Wide-Bandgap Titanium-Dioxide Nanotubes: Optical, Electronic and Magnetic Properties. Nanoscale, 6, 10839-10849.
https://doi.org/10.1039/c4nr02417f
[18]  Behzad, S. and Chegel, R. (2013) Investigation of Magnetism in Aluminum-Doped Silicon Carbide Nanotubes. Solid State Communications, 174, 38-42.
https://doi.org/10.1016/j.ssc.2013.09.008
[19]  Mabelet, L.B., Malonda-Boungou, B.R., Mabiala-Poaty, H.B., Raji, A.T. and M’Passi-Mabiala, B. (2020) Energetics, Electronic and Magnetic Properties of Monolayer WSe2 Doped with Pnictogens, Halogens and Transition-Metal (4d, 5d) Atoms: An ab-Initio Study. Physica E: Low-Dimensional Systems and Nanostructures, 124, Article ID: 114161.
https://doi.org/10.1016/j.physe.2020.114161
[20]  El-Khozondar, R.J. (2020) Monte Carlo Simulations of Topological Properties in Two-Phase Polycrystalline Materials for Several Diffusion Mechanism. Advances in Pure Mathematics, 10, 471-491.
https://doi.org/10.4236/apm.2020.109029
[21]  Hwang, C. and Do, M. (2020) Fast Diffusion Monte Carlo Sampling via Conformal Map. Applied Mathematics, 11, 35-41.
https://doi.org/10.4236/am.2020.111004
[22]  Hachem, N., Badrour, I.A., El Antari, A., Lafhal, A., Madani, M. and El Bouziani, M. (2021) Phase Diagrams of a Mixed-Spin Hexagonal Ising Nanotube with Core-Shell Structure. Chinese Journal of Physics, 71, 12-21.
https://doi.org/10.1016/j.cjph.2020.07.001
[23]  Kaneyoshi, T. (2011) Magnetic Properties of a Cylindrical Ising Nanowire (or Nanotube). Physica Status Solidi (b), 248, 250-258.
https://doi.org/10.1002/pssb.201046067
[24]  Canko, O., Erdinç, A., Taşkın, F. and Fuat Yıldırım, A. (2012) Some Characteristic Behavior of Mixed Spin-1/2 and Spin-1 Ising Nano-Tube. Journal of Magnetism and Magnetic Materials, 324, 508-513.
https://doi.org/10.1016/j.jmmm.2011.08.046
[25]  Wang, W., Liu, Y., Gao, Z., Zhao, X., Yang, Y. and Yang, S. (2018) Compensation Behaviors and Magnetic Properties in a Cylindrical Ferrimagnetic Nanotube with Core-Shell Structure: A Monte Carlo Study. Physica E: Low-Dimensional Systems and Nanostructures, 101, 110-124.
https://doi.org/10.1016/j.physe.2018.03.025
[26]  Konstantinova, E. (2008) Theoretical Simulations of Magnetic Nanotubes Using Monte Carlo Method. Journal of Magnetism and Magnetic Materials, 320, 2721-2729.
https://doi.org/10.1016/j.jmmm.2008.06.007
[27]  Karimou, M., Oke, T.D., Hontinfinde, S.I.V., Kple, J. and Hontinfinde, F. (2023) Mean-Field and Monte Carlo Calculations of Phase Transitions in a Core-Shell Ising Nanotube. Physica B: Condensed Matter, 666, Article ID: 415107.
https://doi.org/10.1016/j.physb.2023.415107
[28]  Astaraki, M., Ghaemi, M. and Afzali, K. (2018) Investigation of Phase Diagrams for Cylindrical Ising Nanotube Using Cellular Automata. Physics Letters A, 382, 1291-1297.
https://doi.org/10.1016/j.physleta.2018.03.014
[29]  Escrig, J., Landeros, P., Altbir, D., Vogel, E.E. and Vargas, P. (2007) Phase Diagrams of Magnetic Nanotubes. Journal of Magnetism and Magnetic Materials, 308, 233-237.
https://doi.org/10.1016/j.jmmm.2006.05.019
[30]  Lv, B., Xu, Y., Wu, D. and Sun, Y. (2008) Preparation and Properties of Magnetic Iron Oxide Nanotubes. Particuology, 6, 334-339.
https://doi.org/10.1016/j.partic.2008.04.006
[31]  Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A. and Hlil, E.K. (2013) The Magnetic Properties of a Decorated Ising Nanotube Examined by the Use of the Monte Carlo Simulations. Solid State Communications, 162, 53-56.
https://doi.org/10.1016/j.ssc.2013.03.007
[32]  Blume, M., Emery, V.J. and Griffiths, R.B. (1971) Ising Model for the λ transition and Phase Separation in He3-He4 Mixtures. Physical Review A, 4, 1071-1077.
https://doi.org/10.1103/physreva.4.1071
[33]  Zounmenou, N.F., Hontinfinde, S.I.V., Kple, J., Karimou, M. and Hontinfinde, F. (2020) Magnetic Properties of a Spin-7/2 and Spin-5/2 Core/shell Nanowire: A Monte Carlo Study. Applied Physics A, 126, Article No. 683.
https://doi.org/10.1007/s00339-020-03856-0
[34]  Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953) Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21, 1087-1092.
https://doi.org/10.1063/1.1699114
[35]  Karimou, M., Yessoufou, R.A., Ngantso, G.D., Hontinfinde, F. and Benyoussef, A. (2018) Mean-Field and Monte Carlo Studies of the Magnetic Properties of a Spin-7/2 and Spin-5/2 Ising Bilayer Film. Journal of Superconductivity and Novel Magnetism, 32, 1769-1779.
https://doi.org/10.1007/s10948-018-4876-4
[36]  Diep, H.T. (2003) Physique de la Mattiere Condensée. Dunod.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413