全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进Canny算子的声呐图像边缘检测
Sonar Image Edge Detection Based on Improved Canny Operator

DOI: 10.12677/jisp.2024.133021, PP. 247-257

Keywords: 声呐图像边缘检测,C-L算子,边缘检测评价指标
Sonar Image Edge Detection
, C-L Operator, Edge Detection Evaluation Indicators

Full-Text   Cite this paper   Add to My Lib

Abstract:

目标的识别与解译是声呐图像处理中的一项重要任务。受到海底混响噪声和复杂背景的干扰,声呐图像有对比度差、分辨率低、噪声严重的问题,给声呐图像的目标识别带来了显著的挑战。为此,本文提出了一种改进的Canny算子边缘检测方法。通过LEE滤波器去除噪声,其次用OTSU阈值法划分高低阈值,最后运用Laplacian算子检测离群点并将其去除。本文将该方法命名为Canny-Laplacian算子(C-L算子)。本文使用多种边缘检测方法与改进的方法对真实声呐图像进行了处理,并在连续性、完整性和准确性上进行了对比。本文使用多种评价指标进行定量分析,证明了本文方法在声呐图像的边缘检测上有更好的效果。
Target recognition and interpretation is an important task in sonar image processing. Due to the interference of underwater reverberation noise and complex backgrounds, sonar images suffer from poor contrast, low resolution, and severe noise, posing significant challenges to target recognition in sonar images. Therefore, this article proposes an improved Canny operator edge detection method. Remove noise through LEE filters, then divide high and low thresholds using OTSU thresholding method, and finally use Laplacian operator to detect outliers and remove them. This article names the method Canny Laplacian operator (C-L operator). This article uses multiple edge detection methods and improved methods to process real sonar images, and compares them in terms of continuity, integrity, and accuracy. This article uses multiple evaluation indicators for quantitative analysis, proving that our method has better performance in edge detection of sonar images.

References

[1]  郭海涛, 赵红叶, 徐雷. 基于循环平移和DTCWT的声呐图像滤波方法[J]. 仪器仪表学报, 2015, 36(6): 1350-1355.
[2]  郭海涛, 方金, 王泽洋. 利用改进的P-M模型抑制声呐图像散斑噪声[J]. 仪器仪表学报, 2014, 35(1): 82-87.
[3]  Wang, Z., Zhang, S., Huang, W., Guo, J. and Zeng, L. (2021) Sonar Image Target Detection Based on Adaptive Global Feature Enhancement Network. IEEE Sensors Journal, 22, 1509-1530.
https://doi.org/10.1109/JSEN.2021.3131645
[4]  Huang, Y., Chen, G.X. and Chen, Q.F. (2015) A Novel Approach of Edge Detection Based on Gray Correlation Degree and Kirsch Operator. Applied Mechanics and Materials, 731, 169-172.
https://doi.org/10.4028/www.scientific.net/AMM.731.169
[5]  Zhang, Y., Wang, Z., Wang, Y., Zhang, C. and Zhao, B. (2021) Research on Image Defect Detection of Silicon Panel Based on Prewitt and Canny Operator. Frontiers in Physics, 9, Article 701462.
https://doi.org/10.3389/fphy.2021.701462
[6]  Canny, J. (1986) A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698.
https://doi.org/10.1109/TPAMI.1986.4767851
[7]  郭忠峰, 唐晓晓, 任仲伟, 等. 基于Canny算子改进的图像边缘检测算法研究[J]. 机械研究与应用, 2017, 30(2): 123-125.
[8]  Biswas, R. and Sil, J. (2012) An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets. Procedia Technology, 4, 820-824.
https://doi.org/10.1016/j.protcy.2012.05.134
[9]  Liu, X., Wang, X. and Duan, Z. (2014) Canny Edge Detection Based on Iterative Algorithm. International Journal of Security and Its Applications, 8, 41-50.
https://doi.org/10.14257/ijsia.2014.8.5.05
[10]  王小俊, 刘旭敏, 关永. 基于改进Canny算子的图像边缘检测算法[J]. 计算机工程, 2012, 38(14): 196-198+202.
[11]  李一波, 刘佰仑. 基于改进Canny算子的图像边缘检测算法[J]. 科学技术创新, 2022(2): 93-96.
[12]  Qin, X. (2021) A Modified Canny Edge Detector Based on Weighted Least Squares. Computational Statistics, 36, 641-659.
https://doi.org/10.1007/s00180-020-01017-8
[13]  Huang, M., Liu, Y. and Yang, Y. (2022) Edge Detection of Ore and Rock on the Surface of Explosion Pile Based on Improved Canny Operator. Alexandria Engineering Journal, 61, 10769-10777.
https://doi.org/10.1016/j.aej.2022.04.019
[14]  Lee, J.S. (1980) Digital Image Enhancement and Noise Filtering by Use of Local Statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 165-168.
https://doi.org/10.1109/TPAMI.1980.4766994
[15]  Chen, J., Liu, P., Zhao, H., Zhang, C. and Zhang, J. (2021) Analytical Studying the Axial Performance of Fully Encapsulated Rock Bolts. Engineering Failure Analysis, 128, Article 105580.
https://doi.org/10.1016/j.engfailanal.2021.105580
[16]  Otsu, N. (1978) A Threshold Selection Method from Gray-Level Histogram. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62-66.
https://doi.org/10.1109/TSMC.1979.4310076
[17]  Huo, Y.K., Wei, G., Zhang, Y.D. and Wu, L.N. (2010) An Adaptive Threshold for the Canny Operator of Edge Detection. 2010 International Conference on Image Analysis and Signal Processing, Nanjing, 9-11 April 2010, 371-374.
[18]  Jain, A.K. and Christensen, C.R. (1980) Digital Processing of Images in Speckle Noise. Applications of Speckle Phenomena, 243, 46-50.
https://doi.org/10.1117/12.959284
[19]  Cheng, Y.E. (2012) An Improved Canny Edge Detection Algorithm. In: Qian, Z.H., Cao, L., et al., Eds., Recent Advances in Computer Science and Information Engineering, Springer Berlin Heidelberg, 551-558.
https://doi.org/10.1007/978-3-642-25766-7_73
[20]  Pan, Y., Meng, Y. and Zhu, L. (2021) SAR Image Despeckling Method Based on Improved Frost Filtering. Signal, Image and Video Processing, 15, 843-850.
https://doi.org/10.1007/s11760-020-01805-1
[21]  Rong, W., Li, Z., Zhang, W. and Sun, L. (2014) An Improved CANNY Edge Detection Algorithm. 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, 3-6 August 2014, 577-582.
https://doi.org/10.1109/ICMA.2014.6885761
[22]  Fang, M., Yue, G.X. and Yu, Q.C. (2009).The Study on an Application of Otsu Method in Canny Operator. The 2009 International Symposium on Information Processing in Sensor Networks, San Francisco, 13-16 April 2009.
[23]  ?elebi, A. T. and ErtüRk, S. (2010) Target Detection in Sonar Images Using Empirical Mode Decomposition and Morphology. 2010 IEEE 18th Signal Processing and Communications Applications Conference, Kemer, 22-24 April 2010, 760-763.
https://doi.org/10.1109/SIU.2010.5653714
[24]  Filzasavitra, P., Purboyo, T. W. and Saputra, R. E. (2019) Analysis of Steganography on PNG Hnage Using Least Significant Bit (LSB), Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE). Journal of Engineering and Applied Sciences, 14, 7821-7827.
[25]  Liu, Y., Cheng, M.M., Hu, X., Wang, K. and Bai, X. (2017) Richer Convolutional Features for Edge Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2017, 3000-3009.
[26]  Rafferty, E.A., Park, J.M., Philpotts, L.E., Poplack, S.P., Sumkin, J.H., Halpern, E.F. and Niklason, L.T. (2014) Diagnostic Accuracy and Recall Rates for Digital Mammography and Digital Mammography Combined with One-View and Two-View Tomosynthesis: Results of an Enriched Reader Study. American Journal of Roentgenology, 202, 273-281.
https://doi.org/10.2214/AJR.13.11240

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133