全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的有向目标检测研究进展
Research Progress of Directed Object Detection Based on Deep Learning

DOI: 10.12677/jisp.2024.133022, PP. 258-270

Keywords: 有向目标检测,计算机视觉,深度学习,综述,卷积神经网络
Oriented Object Detection
, Computer Vision, Deep Learning, Overview, Convolutional Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

目标检测是计算机视觉领域的重要任务,旨在从图像或视频中准确地识别和定位出现的目标物体。但是,普通目标检测算法往往难以处理旋转、带有方向信息的物体。针对此问题,诞生了许多专门用于有向目标检测方法,这些方法提供了更好的面向目标的空间表达,在图像处理方面取得了重大进展。有向目标检测的基本原理是将检测目标的旋转方框和倾斜角以及特征先界定再表示。本文综述了有向目标检测现阶段的国内外研究现状,根据有无锚框将当前基于深度学习的有向目标检测方法分为了基于锚框的一阶段方法、基于锚框的二阶段方法和无锚框方法3类方法进行归纳分析,并从优缺点、骨干网络、适用场景和数据集等方面进行了对比。最后,对有向目标检测方法的发展前景和研究方向进行了展望。
Object detection is an important task in the field of computer vision, aimed at accurately identifying and locating objects appearing in images or videos. However, conventional object detection algorithms often struggle to handle objects with rotation or directional information. To address this issue, many specialized methods for oriented object detection have been developed, offering better spatial representation tailored to the objects and achieving significant progress in image processing. The basic principle of oriented object detection is to define and represent the rotation bounding box, tilt angle, and features of the detected objects. This paper reviews the current research status of oriented object detection both domestically and internationally, categorizing current deep learning-based oriented object detection methods into three types: one-stage methods based on anchor boxes, two-stage methods based on anchor boxes, and anchor-free methods, based on whether anchor boxes are used or not, and conducts a comparative analysis from aspects of advantages, disadvantages, backbone networks, applicable scenarios, and datasets. Finally, the paper discusses the prospects and research directions of oriented object detection methods.

References

[1]  罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239.
[2]  史彩娟, 张卫明, 陈厚儒, 等. 基于深度学习的显著性目标检测综述[J]. 计算机科学与探索, 2021, 15(2): 219-232.
[3]  刘天颖, 李文根, 关佶红. 基于深度学习的光学遥感图像目标检测方法综述[J]. 无线电通信技术, 2020, 46(6): 624-634.
[4]  Jiang, H. and Learned-Miller, E. (2017) Face Detection with the Faster R-CNN. 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington DC, 30 May 2017-3 June 2017, 650-657.
https://doi.org/10.1109/fg.2017.82
[5]  Elsasser, S., Gali, R.R., Schwickart, M., Larsen, C.N., Leggett, D.S., Müller, B., et al. (2002) Proteasome Subunit Rpn1 Binds Ubiquitin-Like Protein Domains. Nature Cell Biology, 4, 725-730.
https://doi.org/10.1038/ncb845
[6]  Cui, F., Ning, M., Shen, J. and Shu, X. (2022) Automatic Recognition and Tracking of Highway Layer-Interface Using Faster R-CNN. Journal of Applied Geophysics, 196, Article ID: 104477.
https://doi.org/10.1016/j.jappgeo.2021.104477
[7]  He, K., Gkioxari, G., et al. (2017) Mask R-CNN. IEEE Transactions on Pattern Analysis &Machine Intelligence, 42, 386-397.
[8]  刘敏豪, 王堃, 金睿蛟, 等. 基于改进RoI Transformer的遥感图像多尺度旋转目标检测[J]. 应用光学, 2023, 44(5): 1010-1021.
https://doi.org/10.5768/JAO202344.0502001
[9]  陈飞, 蔡钟晟, 王波, 等. 基于Libra-RCNN和椭圆形状特征的图像中目标检测方法及系统[P]. 中国, CN202210112398.2. 2024-04-01.
[10]  Dai, J., Li, Y., He, K., et al. (2016) R-FCN: Object Detection via Region-Based Fully Convolutional Networks. Curran Associates Inc., New York.
[11]  Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., et al. (2017) Deformable Convolutional Networks. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 764-773.
https://doi.org/10.1109/iccv.2017.89
[12]  Miquel, J.R., Tolu, S., Scholler, F.E.T. and Galeazzi, R. (2021) RetinaNet Object Detector Based on Analog-to-Spiking Neural Network Conversion. 2021 8th International Conference on Soft Computing & Machine Intelligence (ISCMI), Cario, 26-27 November 2021, 201-205.
https://doi.org/10.1109/iscmi53840.2021.9654818
[13]  Demir, A., Massaad, E. and Kiziltan, B. (2023) Topology-Aware Focal Loss for 3D Image Segmentation.
[14]  Jungmeier, M., Wagenleitner, S. and Zollner, D. (2008) PANet Protected Area Networks—A Handbook.
[15]  Li, W., Chen, Y., Hu, K. and Zhu, J. (2022) Oriented RepPoints for Aerial Object Detection. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, 18-24 June 2022, 1819-1828.
https://doi.org/10.1109/cvpr52688.2022.00187
[16]  Zhang, K., Xiong, F., Sun, P., et al. (2019) Double Anchor R-CNN for Human Detection in a Crowd.
[17]  Redmon, J. and Farhadi, A. (2017) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525.
https://doi.org/10.1109/cvpr.2017.690
[18]  He, A., Chen, G., Zheng, W., Ni, Z., Zhang, Q. and Zhu, Z. (2021) Driver Cell-Phone Use Detection Based on CornerNet-Lite Network. IOP Conference Series: Earth and Environmental Science, 632, Article ID: 042004.
https://doi.org/10.1088/1755-1315/632/4/042004
[19]  Chen, Y., Zhang, Z., Cao, Y., et al. (2020) RepPoints V2: Verification Meets Regression for Object Detection.
[20]  Zhang, X., Guo, W., Xing, Y., Wang, W., Yin, H. and Zhang, Y. (2023) AugFCOS: Augmented Fully Convolutional One-Stage Object Detection Network. Pattern Recognition, 134, Article ID: 109098.
https://doi.org/10.1016/j.patcog.2022.109098
[21]  Srikanth, A., Srinivasan, A., Indrajit, H. and N., V. (2021) Contactless Object Identification Algorithm for the Visually Impaired Using EfficientDet. 2021 6th International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, 25-27 March 2021, 417-420.
https://doi.org/10.1109/wispnet51692.2021.9419427
[22]  Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L. and Shi, J. (2020) FoveaBox: Beyound Anchor-Based Object Detection. IEEE Transactions on Image Processing, 29, 7389-7398.
https://doi.org/10.1109/tip.2020.3002345
[23]  Hall, N.L., Dvonch, J.T., Marsik, F.J., et al. (2017) Hall et al. ATSS Supplemental Information ijerph-14-00173-s001.
[24]  Kannadaguli, P. (2020) FCOS Based Human Detection System Using Thermal Imaging for UAV Based Surveillance Applications. 2020 IEEE Bombay Section Signature Conference (IBSSC), Mumbai, 4-6 December 2020, 79-83.
https://doi.org/10.1109/ibssc51096.2020.9332157
[25]  Zhang, H., Du, Q., Qi, Q., Zhang, J., Wang, F. and Gao, M. (2022) A Recursive Attention-Enhanced Bidirectional Feature Pyramid Network for Small Object Detection. Multimedia Tools and Applications, 82, 13999-14018.
https://doi.org/10.1007/s11042-022-13951-4
[26]  Pinchao, H., Shijian, L., Ge, X.U., et al. (2023) Helmet Wearing Detection Method Based on Improved CenterNet with Enhanced Associations. Computer Engineering and Applications, 59, 250-256.
[27]  Ming, Q., Miao, L., Zhou, Z., Song, J., Dong, Y. and Yang, X. (2023) Task Interleaving and Orientation Estimation for High-Precision Oriented Object Detection in Aerial Images. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 241-255.
https://doi.org/10.1016/j.isprsjprs.2023.01.001
[28]  张瑞琰, 姜秀杰, 安军社, 等. 面向光学遥感目标的全局上下文检测模型设计[J]. 中国光学, 2020, 13(6): 1302-1313.
[29]  Tao, Y., Muller, J.-P. and Poole, W. (2016) Automated Localisation of Mars Rovers Using Co-Registered HiRISE-CTX-HRSC Orthorectified Images and Wide Baseline Navcam Orthorectified Mosaics. Icarus: International Journal of Solar System Studies, 280, 139-157.
[30]  Zhang, Z., Zhang, C., Shen, W., Yao, C., Liu, W. and Bai, X. (2016) Multi-Oriented Text Detection with Fully Convolutional Networks. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 4159-4167.
https://doi.org/10.1109/cvpr.2016.451
[31]  Veit, A., Matera, T., Neumann, L., et al. (2016) COCO-Text: Dataset and Benchmark for Text Detection and Recognition in Natural Images.
[32]  Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwamura, M., et al. (2015) ICDAR 2015 Competition on Robust Reading. 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, 23-26 August 2015, 1156-1160.
https://doi.org/10.1109/icdar.2015.7333942
[33]  杜浩浩. 基于深度卷积神经网络的单阶段目标检测算法的研究[D]: [硕士学位论文]. 郑州: 河南大学, 2020.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413