全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图像纹理的混合图像压缩算法
Hybrid Image Compression Algorithm Based on Image Texture

DOI: 10.12677/jisp.2024.133025, PP. 289-301

Keywords: 图像压缩,图傅里叶变换,纹理相关表示,离散余弦变换
Image Compression
, Graph Fourier Transform, Texture Correlation Representation, DCT

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对经典图像压缩编码中跨纹理边缘图像块编码性能差、存在非稀疏表示等问题,提出一种基于图像纹理的混合图像压缩编码方案。在图傅里叶变换中,利用图像块具有不同纹理特征的特点对图拉普拉斯矩阵进行构造并实现图像块纹理特征的自适应选择,以提高图像块的压缩编码性能;再通过率失真优化实现离散余弦变换和图傅里叶变换的最优变换选择。实验结果表明,在相同比特率下,混合图像压缩算法的峰值信噪比比单纯的离散余弦变换平均高出1.08 dB,并且在相同的量化步长下具有更好的图像质量。
A hybrid image compression scheme based on image texture is proposed to address the problems of poor coding performance of image blocks across texture edges and the existence of non-sparse representation in classical image compression coding. Firstly, the image blocks with different texture features are utilized in the graph Fourier transform to construct the graph La-place matrix and realize the adaptive selection of texture features of image blocks to improve the compression coding performance of image blocks. Secondly, the optimal transform selection is achieved by rate-distortion optimization in discrete cosine transform and graph Fourier trans-form. Experimental results show that the hybrid image compression algorithm outperforms a simple discrete cosine transform by an average of 1.08 dB in peak signal-to-noise ratio at the same bit rate, and it has better image quality at the same quantization step.

References

[1]  Ahmed, N., Natarajan, T. and Rao, K.R. (1974) Discrete Cosine Transform. IEEE Transactions on Computers, 23, 90-93.
https://doi.org/10.1109/t-c.1974.223784
[2]  Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A. and Vandergheynst, P. (2013) The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. IEEE Signal Processing Magazine, 30, 83-98.
https://doi.org/10.1109/msp.2012.2235192
[3]  Pavez, E., Egilmez, H.E., Wang, Y. and Ortega, A. (2015) GTT: Graph Template Transforms with Applications to Image Coding. 2015 Picture Coding Symposium (PCS), Cairns, 31 May-3 June 2015, 199-203.
https://doi.org/10.1109/pcs.2015.7170075
[4]  Hu, W., Cheung, G., Ortega, A. and Au, O.C. (2015) Multiresolution Graph Fourier Transform for Compression of Piecewise Smooth Images. IEEE Transactions on Image Processing, 24, 419-433.
https://doi.org/10.1109/tip.2014.2378055
[5]  Fracastoro, G., Thanou, D. and Frossard, P. (2020) Graph Transform Optimization with Application to Image Compression. IEEE Transactions on Image Processing, 29, 419-432.
https://doi.org/10.1109/tip.2019.2932853
[6]  Uruma, K., Konishi, K., Takahashi, T. and Furukawa, T. (2019) Colorization-Based Image Coding Using Graph Fourier Transform. Signal Processing: Image Communication, 74, 266-279.
https://doi.org/10.1016/j.image.2018.12.011
[7]  Gnutti, A., Guerrini, F., Leonardi, R. and Ortega, A. (2021) Symmetry-Based Graph Fourier Transforms: Are They Optimal for Image Compression? 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, 19-22 September 2021, 1594-1598.
https://doi.org/10.1109/icip42928.2021.9506636
[8]  Yan, F. and Li, B. (2022) Multi-Dimensional Graph Fractional Fourier Transform and Its Application to Data Compression. Digital Signal Processing, 129, 103683.
https://doi.org/10.1016/j.dsp.2022.103683
[9]  Fracastoro, G., Thanou, D. and Frossard, P. (2016) Graph Transform Learning for Image Compression. 2016 Picture Coding Symposium (PCS), Nuremberg, 4-7 December 2016, 1-5.
https://doi.org/10.1109/pcs.2016.7906368
[10]  Shao, Y., Zhang, Q., Li, G., Li, Z. and Li, L. (2018) Hybrid Point Cloud Attribute Compression Using Slice-Based Layered Structure and Block-Based Intra Prediction. Proceedings of the 26th ACM International Conference on Multimedia, Seoul, 22-26 October 2018, 1199-1207.
https://doi.org/10.1145/3240508.3240696
[11]  Gu, S., Hou, J., Zeng, H., Yuan, H. and Ma, K. (2020) 3D Point Cloud Attribute Compression Using Geometry-Guided Sparse Representation. IEEE Transactions on Image Processing, 29, 796-808.
https://doi.org/10.1109/tip.2019.2936738
[12]  Grady, L.J. and Polimeni, J.R. (2010) Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer, London.
https://doi.org/10.1007/978-1-84996-290-2
[13]  Song, F., Li, G., Gao, W. and Li, T.H. (2022) Rate-Distortion Optimized Graph for Point Cloud Attribute Coding. IEEE Signal Processing Letters, 29, 922-926.
https://doi.org/10.1109/lsp.2022.3161868
[14]  Hammond, D.K., Vandergheynst, P. and Gribonval, R. (2011) Wavelets on Graphs via Spectral Graph Theory. Applied and Computational Harmonic Analysis, 30, 129-150.
https://doi.org/10.1016/j.acha.2010.04.005
[15]  Li, L., Zhao, Y. and Wang, S. (2023) Astronomical Image Coding Based on Graph Fourier Transform. Proceedings of the 12th International Conference on Image and Graphics, Nanjing, 22-24 September 2023, 311-322.
https://doi.org/10.1007/978-3-031-46311-2_26
[16]  Song, F., Li, G., Yang, X., Gao, W. and Li, T.H. (2022) Fine-Grained Correlation Representation for Graph-Based Point Cloud Attribute Compression. 2022 IEEE International Conference on Multimedia and Expo (ICME), Taipei, 18-22 July 2022, 1-6.
https://doi.org/10.1109/icme52920.2022.9859998
[17]  Durmus, D. (2020) Spatial Frequency and the Performance of Image-Based Visual Complexity Metrics. IEEE Access, 8, 100111-100119.
https://doi.org/10.1109/access.2020.2998292
[18]  Zhou, B., Xu, S. and Yang, X.-X. (2015) Computing the Color Complexity of Images. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Zhangjiajie, 15-17 August 2015, 1898-1902.
https://doi.org/10.1109/fskd.2015.7382237
[19]  Bjontegaard, G. (2001) Calculation of Average PSNR Differences between RD-Curves. Proceedings of the ITU-T Video Coding Experts Group, 2-4.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413