全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

角度相关共轭函数的蒙卡自动减方差算法研究
Research on Monte Carlo Variance Reduction Algorithm for the Angle-Dependent Adjoint Function

DOI: 10.12677/nst.2024.123015, PP. 139-150

Keywords: 深穿透辐射屏蔽,蒙特卡罗,减方差,正向加权共轭函数
Deep-Penetration Shielding
, Monte Carlo, Variance Reduction, Forward-Weighted Adjoint Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

一致性共轭驱动重要抽样(CADIS)方法是目前广泛采用的自动减方差方法,该方法采用共轭标通量密度来一致性生成减方差参数,但缺乏角度偏倚信息,在处理角通量密度各向异性强的屏蔽问题时加速效果受到限制。本文基于CADIS-Ω方法,以多维离散纵标输运计算程序ARES为载体,开发角度相关减方差参数计算模块,构造正向加权重要性函数,自动生成角度相关源偏倚参数与权窗参数,弥补现有减方差参数在角度信息上的缺失,为蒙卡求解强各向异性深穿透屏蔽问题提供匹配度更高的自动减方差参数。采用IRI-TUB国际基准题进行验证。数值结果表明,CADIS-Ω方法能够在保证结果无偏的情况下获得较CADIS方法更优的加速效果。初步验证可说明CADIS-Ω方法对于复杂的强各向异性深穿透问题具有较好的应用前景。
Consistent Adjoint Driven Importance Sampling (CADIS) is a widely utilized automatic variance reduction method. This method employs adjoint scalar flux to consistently generate variance reduction parameters. However, it lacks angle biasing information and its acceleration effect is limited when dealing with deep-penetration shielding problems characterized by strong anisotropy. Building upon the CADIS-Ω method and utilizing the multi-dimensional discrete ordinates transport calculation code ARES, this paper develops a calculation module for angle-dependent variance reduction parameters. It constructs a forward-weighted importance function and automatically generates angle-dependent source biasing parameters and weight window parameters to compensate for the absence of angle information in existing variance reduction parameters. This paper introduces a variance reduction parameter with a higher matching degree for solving the strong anisotropic deep penetration shielding problem by MCNP. The international benchmark problem IRI-TUB was used for verification purposes. Numerical results demonstrate that the CADIS-Ω method can achieve better acceleration effects compared to the CADIS method without biasing. Preliminary verification indicates that the CADIS-Ω method holds promising potential for addressing complex strong anisotropic deep penetration problems.

References

[1]  Kalos, M.H. (1963) Importance Sampling in Monte Carlo Shielding Calculations: I. Neutron Penetration through Thick Hydrogen Slabs. Nuclear Science and Engineering, 16, 227-234.
https://doi.org/10.13182/NSE63-A26504
[2]  Tang, J.S. and Hoffman, T.J. (1988) Monte Carlo Shielding Analyses Using an Automated Biasing Procedure. Nuclear Science and Engineering, 99, 329-342.
https://doi.org/10.13182/NSE88-A23562
[3]  Mickael, M.W. (1992) Importance Estimation in Monte Carlo Modelling of Neutron and Photon Transport. Nuclear Geophysics (International Journal of Radiation Applications and Instrumentation, Part E), 6, 341-350.
[4]  Mickael, M.W. (1995) A Fast, Automated, Semi-Deterministic Weight Windows Generator for MCNP. Nuclear Science and Engineering, 119, 34-43.
https://doi.org/10.13182/NSE95-A24069
[5]  Gardner, R.P. and Liu, L. (1999) Monte Carlo Simulation of Neutron Porosity Oil Well Logging Tools: Combining the Geometry-Independent Fine-Mesh Importance Map and One-Dimensional Diffusion Model Approaches. Nuclear Science and Engineering, 133, 80-91.
https://doi.org/10.13182/NSE99-A2074
[6]  Shuttleworth, T., Grimstone, M. and Chucas, S. (2000) Application of Acceleration Techniques in MCBEND. Journal of Nuclear Science and Technology, 37, 406-411.
https://doi.org/10.1080/00223131.2000.10874916
[7]  Wagner, J.C. (1997) Acceleration of Monte Carlo Shielding Calculations with an Automated Variance Reduction Technique and Parallel Processing. PhD, The Pennsylvania State University, University Park.
[8]  Cooper, M.A. and Larsen, E.W. (2001) Automated Weight Windows for Global Monte Carlo Particle Transport Calculations. Nuclear Science and Engineering, 137, 1-13.
https://doi.org/10.13182/NSE00-34
[9]  Wagner, J.C., Blakeman, E.D. and Peplow, D.E. (2007) Forward-Weighted CADIS Method for Global Variance Reduction. Transactions-American Nuclear Society, 97, 630-633.
[10]  Munk, M. (2017) FW/CADIS-?: An Angle-Informed Hybrid Method for Neutron Transport. PhD, University of California, Berkeley.
[11]  郑华庆, 李斌, 宋婧, 等. 基于自动网格划分与权窗平滑的自适应减方差方法[J]. 核技术, 2016, 39(9): 74-78.
[12]  刘聪, 张斌, 张亮, 等. SN共轭函数用于蒙特卡罗粒子输运自动减方差的研究[J]. 计算物理, 2018, 35(5): 535-544.
[13]  郑琪, 沈炜, 贺清明,等. 基于NECP-MCX的蒙特卡罗-确定论耦合及权窗网格粗化方法研究[J]. 核动力工程, 2021, 42(2): 202-207.
[14]  Shu, H., Cao, L., He, Q., et al. (2024) Study on Unstructured Mesh-Based Monte Carlo/Deterministic Coupled Particle Transport Calculation Method. Nuclear Science and Engineering, 1-21.
https://doi.org/10.1080/00295639.2023.2295065
[15]  李新梅. 蒙特卡罗粒子输运模拟中源偏倚和网格权窗方法研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2015.
[16]  郑俞. 蒙特卡罗减方差加速方法研究与应用[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2021.
[17]  Brown, F.B. (2003) MCNP—A General Monte Carlo N-Particle Transport Code, Version 5. Los Alamos National Laboratory, Santa Fe.
[18]  张斌. 基于目标导向的角度自适应射线效应消除方法研究[D]: [博士学位论文]. 北京: 华北电力大学, 2018.
[19]  谢仲生, 邓力. 中子输运理论数值计算方法[M]. 第2版. 西安: 西安交通大学出版社, 2022.
[20]  Chen, Y., Zhang, B., Zhang, L., et al. (2017) ARES: A Parallel Discrete Ordinates Transport Code for Radiation Shielding Applications and Reactor Physics Analysis. Science and Technology of Nuclear Installations.
https://doi.org/10.1155/2017/2596727
[21]  赵旭. 屏蔽计算宽群宏观截面产生方法研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2023.
[22]  Wagner, J.C. and Haghighat, A. (1998) Automated Variance Reduction of Monte Carlo Shielding Calculations Using the Discrete Ordinates Adjoint Function. Nuclear Science and Engineering, 128, 186-208.
https://doi.org/10.13182/NSE98-2
[23]  Dai, N., Zhang, B., Chen, Y., et al. (2021) Adaptive Discontinuous Finite Element Quadrature Sets over an Icosahedron for Discrete Ordinates Method. Nuclear Science and Techniques, 32, 98.
https://doi.org/10.1007/s41365-021-00934-7
[24]  Kloosterman, J.L., Hoogenboom, J.E. and Zsolnay, E.M. (1993) Experiments and Calculations on Neutron Streaming through Bent Ducts. Journal of Nuclear Science and Technology, 30, 611-627.
https://doi.org/10.1080/18811248.1993.9734528
[25]  Kloosterman, J.L. (1992) On Gamma Ray Shielding and Neutron Streaming through Ducts. Technische Univ. Delft Interfacultair Reactor Inst., Berlin.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413