全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含Ti低活化FeCrV基中熵合金的铅铋腐蚀性能研究
Study on LBE Corrosion Properties of Reduced Activation FeCrV-Based Medium-Entropy Alloys Containing Ti

DOI: 10.12677/nst.2024.123016, PP. 151-161

Keywords: 低活化材料,中熵合金,铅铋腐蚀,Laves相
Reduced Activation Materials
, Medium-Entropy Alloys, LBE Corrosion, Laves Phase

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究采用电弧熔炼法制备了低活化且等原子比的FeCrV以及含Ti的FeCrVTi中熵合金,并对其相结构和铅铋腐蚀性能进行了研究。在相组成方面,表征结果显示FeCrV合金为BCC单相结构,FeCrVTi合金为BCC + Laves双相结构,同时表征结果与热力学参数经验标准的预测结果相互吻合,证实了利用热力学参数开发与设计合金的可行性。然后,耐铅铋腐蚀性能方面,结果发现由于Ti的加入,FeCrVTi合金的耐铅铋腐蚀性能与FeCrV合金相比并未得到提升,同时还有一定程度的腐蚀层脱落现象。最后,通过表面和截面分析合金的腐蚀机理,推断出FeCrV合金以氧化腐蚀为主,而FeCrVTi合金以BCC相的氧化腐蚀和Laves相的溶解腐蚀为主。本研究为铅冷快堆和ADS系统的耐铅铋腐蚀性和低活化性结构材料的开发提供了新的思路和观点。
In this study, reduced activation FeCrV and FeCrVTi medium-entropy alloys (MEAs) with equiatomic were prepared using arc melting. The phase structures and lead-bismuth eutectic (LBE) corrosion resistance of the MEAs were investigated. Structural characterization revealed that FeCrV MEA exhibited a single BCC phase, while FeCrVTi MEA exhibited a dual-phase structure comprising BCC and Laves phases. These results are consistent with predictions based on thermodynamic parameters, confirming the feasibility of using thermodynamic criteria for alloy design. In terms of LBE corrosion resistance, the addition of Ti did not enhance LBE corrosion resistance of FeCrVTi compared to FeCrV MEA. Moreover, there was evidence of some degree of corrosion layer detachment. Surface and cross-sectional analyses of the corrosion mechanism suggested that FeCrV MEA primarily undergoes oxidative corrosion, whereas FeCrVTi MEA is primarily subjected to oxidative corrosion in the BCC phase and dissolution corrosion in the Laves phase. This study provides new insights and perspectives for the development of LBE corrosion resistance and reduced activation structural materials for lead-cooled fast reactors and accelerator-driven systems (ADS).

References

[1]  Murty, K.L. and Charit, I. (2008) Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities. Journal of Nuclear Materials, 383, 189-195.
https://doi.org/10.1016/j.jnucmat.2008.08.044
[2]  Gong, X., Chen, J., Hu, F., et al. (2020) Liquid Metal Embrittlement of an Fe10Cr4Al Ferritic Alloy Exposed to Oxygen-Depleted and Saturated Lead-Bismuth Eutectic at 350?C. Corrosion Science, 165, Article 108364.
https://doi.org/10.1016/j.corsci.2019.108364
[3]  张彦超, 韦朋余, 朱强, 等. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 121-126.
[4]  Yang, J., Shi, K., Zhang, W., et al. (2021) A Novel AlCrFeMoTi High-Entropy Alloy Coating with a High Corrosion-Resistance in Lead-Bismuth Eutectic Alloy. Corrosion Science, 187, Article 109524.
https://doi.org/10.1016/j.corsci.2021.109524
[5]  Zinkle, S.J., Boutard, J.L., Hoelzer, D., et al. (2017) Development of Next Generation Tempered and ODS Reduced Activation Ferritic/Martensitic Steels for Fusion Energy Applications. Nuclear Fusion, 57, Article 092005.
https://doi.org/10.1088/1741-4326/57/9/092005
[6]  Fukumoto, K., Kuroyanagi, Y., Kuroiwa, H., et al. (2011) Effect of Impurities on Mechanical Properties of Vanadium alloys under Liquid-Lithium Environment during Neutron Irradiation at HFIR. Journal of Nuclear Materials, 417, 295-298.
https://doi.org/10.1016/j.jnucmat.2010.12.073
[7]  Ivekovi?, A., Novak, S., Dra?i?, G., et al. (2013) Current Status and Prospects of SiCf/SiC for Fusion Structural Applications. Journal of the European Ceramic Society, 33, 1577-1589.
https://doi.org/10.1016/j.jeurceramsoc.2013.02.013
[8]  Yeh, J.W., Chen, S.K., Lin, S.J., et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6, 299-303.
https://doi.org/10.1002/adem.200300567
[9]  Zhang, Y., Zuo, T.T., Tang, Z., et al. (2014) Microstructures and Properties of High-Entropy Alloys. Progress in Materials Science, 61, 1-93.
https://doi.org/10.1016/j.pmatsci.2013.10.001
[10]  Gludovatz, B., Hohenwarter, A., Catoor, D., et al. (2014) A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications. Science, 345, 1153-1158.
https://doi.org/10.1126/science.1254581
[11]  Xian, X., Zhong, Z.H., Zhang, B.W., et al. (2017) A high-entropy V35Ti35Fe15Cr10Zr5 Alloy with Excellent High-Temperature Strength. Materials and Design, 121, 229-236.
https://doi.org/10.1016/j.matdes.2017.02.029
[12]  Ding, X.Y., Zheng, H.Y., Zhang, P.P., et al. (2023) Microstructure and Mechanical Properties of WTaVCrTi Refractory High-Entropy Alloy by Vacuum Levitation Melting for Fusion Applications. Journal of Materials Engineering and Performance, 32, 7869-7878.
https://doi.org/10.1007/s11665-022-07688-2
[13]  Koch, L., Granberg, F., Brink, T., et al. (2017) Local Segregation versus Irradiation Effects in High-Entropy Alloys: Steady-State Conditions in a Driven System. Journal of Applied Physics, 122, Article 105106.
[14]  Kiran Kumar, N.A.P., Li, C., Leonard, K.J., et al. (2016) Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation. Acta Materialia, 113, 230-244.
https://doi.org/10.1016/j.actamat.2016.05.007
[15]  Zhang, Y. (2023) High-Entropy Materials: Advances and Applications. CRC Press.
https://doi.org/10.1201/9781003319986
[16]  Su, Y., Xia, S.Q., Huang, J., et al. (2021) Irradiation Behaviors in BCC Multi-Component Alloys with Different Lattice Distortions. Metals, 11, Article 706.
https://doi.org/10.3390/met11050706
[17]  Liu, Q.Y., Xia, S.Q., Su, Y., et al. (2021) Enhanced Recombination Suppresses the Void Swelling in bcc Multi-Component Alloys. Materialia, 20, Article 101234.
https://doi.org/10.1016/j.mtla.2021.101234
[18]  Ma, L.L., Li, X.W., Sun, B.R., et al. (2022) Low Activation V-Fe-Cr-Mn High-Entropy Alloys with Exceptional Strength. Materials Science and Engineering: A, 860, Article 144243.
https://doi.org/10.1016/j.msea.2022.144243
[19]  Tan, L.Z., Ali, K., Ghosh, P.S., et al. (2022) Design Principles of Low-Activation High Entropy Alloys. Journal of Alloys and Compounds, 907, Article 164526.
https://doi.org/10.1016/j.jallcom.2022.164526
[20]  Carruthers, A.W., Shahmir, H., Hardwick, L., et al. (2021) An Assessment of the High-Entropy Alloy System VCrMnFeAlx. Journal of Alloys and Compounds, 888, Article 161525.
https://doi.org/10.1016/j.jallcom.2021.161525
[21]  Zinkle, S.J. and Ghoniem, N.M. (2000) Operating Temperature Windows for Fusion Reactor Structural Materials. Fusion Engineering and Design, 51-52, 55-71.
https://doi.org/10.1016/S0920-3796(00)00320-3
[22]  Yang, J., Liang, J., Wang, G., et al. (2023) Microstructure, Mechanical Properties and Lead-Bismuth Eutectic Corrosion Behavior of FeCrAlTiNb High-Entropy Alloy Coatings. Corrosion Science, 222, Article 111407.
https://doi.org/10.1016/j.corsci.2023.111407
[23]  Yang, X. and Zhang, Y. (2012) Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys. Materials Chemistry and Physics, 132, 233-238.
https://doi.org/10.1016/j.matchemphys.2011.11.021
[24]  Yurchenko, N., Stepanov, N. and Salishchev G. (2017) Laves-Phase Formation Criterion for High-Entropy Alloys. Materials Science and Technology, 33, 17-22.
https://doi.org/10.1080/02670836.2016.1153277
[25]  赵建华, 金荣华, 纪秀林, 等. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 198-203.
[26]  Takeuchi, A. and Inoue, A. (2005) Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Materials Transactions, 46, 2817-2829.
https://doi.org/10.2320/matertrans.46.2817
[27]  Shi, H., Jianu, A., Fetzer, R., et al. (2021) Compatibility and Microstructure Evolution of Al-Cr-Fe-Ni High Entropy Model Alloys Exposed to Oxygen-Containing Molten Lead. Corrosion Science, 189, Article 109593.
https://doi.org/10.1016/j.corsci.2021.109593
[28]  Stein, F. and Leineweber, A. (2021) Laves Phases: A Review of Their Functional and Structural Applications and an Improved Fundamental Understanding of Stability and Properties. Journal of Materials Science, 56, 5321-5427.
https://doi.org/10.1007/s10853-020-05509-2

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413