全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Removal of Dyes in Aqueous Media with Hydrochar Base of Solid Tanneries Waste: Optimization Process and Application

DOI: 10.4236/msa.2024.157012, PP. 168-185

Keywords: Response Surface Methodology, Hydrochar, Tannery, Hydrothermal Carbonization, Adsorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Response Surface Methodology (RSM) was used to optimise the conditions of preparation of activated hydrochar from tannery solid waste by hydrothermal carbonisation (HTC). The main factors such as residence time, moisture content and final carbonisation temperature were investigated during the optimisation of hydrochar preparation conditions. The three responses investigated are hydrochar yield, iodine and methylene blue indices. The results of experimental analyses showed that the yield of hydrochar decreases with increasing final temperature, leading to the formation of micropores inside the carbonaceous solid. The optimum conditions for preparing the following hydrochar were obtained: 83.10%, 390.44 mg?g?1 and 259.63 mg?g?1 respectively for the hydrochar yield, the iodine and methylene blue indices. The specific surface area of prepared hydrochar is 849.160 m2/g, SEM micrographs showed a porous heterogeneous surface and particularly, the hydrochar surface also revealed external pores on the hydrochar surface which acted as a pathway to the micropores. Fourier transform infrared (FTIR), however, showed a predominance of acid functions on the surface of the carbonaceous solids. Tests were carried out to eliminate indigo carmine in aqueous media. Activated hydrochar showed a high level of activity, with the Langmuir and Freundlich isotherms giving an adsorption quantity of 354.610 mol/g and a KF constant of 468.2489, respectively. The findings of the research revealed that hydrochar produced is well adapted for dyes removal.

References

[1]  Bamberger, Y. and Rogeaux, B. (2007) Quelles solutions des industriels peuvent-ils apporter aux problèmes énergétiques? Revue de lEnergie, 575, 5-16.
[2]  REN21. Renewables (2013) Global Status Report. Technical Report.
[3]  Mochidzuki, K., Sato, N. and Sakoda, A. (2005) Production and Characterization of Carbonaceous Adsorbents from Biomass Wastes by Aqueous Phase Carbonization. Adsorption, 11, 669-673.
https://doi.org/10.1007/s10450-005-6004-6
[4]  Jjagwe, J., Olupot, P.W., Menya, E. and Kalibbala, H.M. (2021) Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. Journal of Bioresources and Bioproducts, 6, 292-322.
https://doi.org/10.1016/j.jobab.2021.03.003
[5]  Tang, Z., Lim, S., Pang, Y., Shuit, S. and Ong, H. (2020) Utilisation of Biomass Wastes Based Activated Carbon Supported Heterogeneous Acid Catalyst for Biodiesel Production. Renewable Energy, 158, 91-102.
https://doi.org/10.1016/j.renene.2020.05.119
[6]  Sun, Y., Li, H., Li, G., Gao, B., Yue, Q. and Li, X. (2016) Characterization and Ciprofloxacin Adsorption Properties of Activated Carbons Prepared from Biomass Wastes by H3PO4 Activation. Bioresource Technology, 217, 239-244.
https://doi.org/10.1016/j.biortech.2016.03.047
[7]  Cavali, M., Libardi Junior, N., de Sena, J.D., Woiciechowski, A.L., Soccol, C.R., Belli Filho, P., et al. (2023) A Review on Hydrothermal Carbonization of Potential Biomass Wastes, Characterization and Environmental Applications of Hydrochar, and Biorefinery Perspectives of the Process. Science of the Total Environment, 857, Article 159627.
https://doi.org/10.1016/j.scitotenv.2022.159627
[8]  Jain, A., Balasubramanian, R. and Srinivasan, M.P. (2016) Hydrothermal Conversion of Biomass Waste to Activated Carbon with High Porosity: A Review. Chemical Engineering Journal, 283, 789-805.
https://doi.org/10.1016/j.cej.2015.08.014
[9]  Funke, A. and Ziegler, F. (2010) Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels, Bioproducts and Biorefining, 4, 160-177.
https://doi.org/10.1002/bbb.198
[10]  Oliveira, I., Blöhse, D. and Ramke, H. (2013) Hydrothermal Carbonization of Agricultural Residues. Bioresource Technology, 142, 138-146.
https://doi.org/10.1016/j.biortech.2013.04.125
[11]  Maniscalco, M.P., Volpe, M. and Messineo, A. (2020) Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. Energies, 13, Article 4098.
https://doi.org/10.3390/en13164098
[12]  Titirici, M., Thomas, A. and Antonietti, M. (2007) Back in the Black: Hydrothermal Carbonization of Plant Material as an Efficient Chemical Process to Treat the CO2 Problem? New Journal of Chemistry, 31, 787-789.
https://doi.org/10.1039/b616045j
[13]  Hoekman, S.K., Broch, A. and Robbins, C. (2011) Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass. Energy & Fuels, 25, 1802-1810.
https://doi.org/10.1021/ef101745n
[14]  Sugimoto, Y., Miki, Y., Hayamizu, K., Umeda, S., Komano, T., Mashimo, K., et al. (1996) Characterization of Thermally Decomposed Cellulose and Red Pine at 200˚C in Water. Journal of the Japan Institute of Energy, 75, 829-838.
https://doi.org/10.3775/jie.75.829
[15]  Masoumi, S., Borugadda, V.B., Nanda, S. and Dalai, A.K. (2021) Hydrochar: A Review on Its Production Technologies and Applications. Catalysts, 11, Article 939.
https://doi.org/10.3390/catal11080939
[16]  Aragón-Briceño, C.I., Pozarlik, A.K., Bramer, E.A., Niedzwiecki, L., Pawlak-Kruczek, H. and Brem, G. (2021) Hydrothermal Carbonization of Wet Biomass from Nitrogen and Phosphorus Approach: A Review. Renewable Energy, 171, 401-415.
https://doi.org/10.1016/j.renene.2021.02.109
[17]  Nana, L.A (2012). Etude et réalisation des opérations de rivière: Cas de la tannerie moderne de la Bénoué. Rapport de stage de fin d’études en vue de l’obtention du diplôme d’ingénieur de travaux en technologie du textile. ISS Université de Maroua.
[18]  Mendondjio, L.L. (2012) La peau fraiche: De son origine a sa commercialisation avant le tannage. Rapport de stage de fin d’étude en vue de l’obtention du diplôme d’ingénieur de travaux en technologie du textile. ISS Université de Maroua.
[19]  Park, D., Yun, Y., Hye Jo, J. and Park, J.M. (2005) Mechanism of Hexavalent Chromium Removal by Dead Fungal Biomass of Aspergillus Niger. Water Research, 39, 533-540.
https://doi.org/10.1016/j.watres.2004.11.002
[20]  Louarrat, M. (2017) Removal of Chromium Cr(Vi) of Tanning Effluent with Activated Carbon from Tannery Solid Wastes. American Journal of Physical Chemistry, 6, 103-109.
https://doi.org/10.11648/j.ajpc.20170606.11
[21]  Debina, B., Baçaoui, A., Tamafo Fouégué, A.D., Kouotou, D., Rahman, A.N., Yaacoubi, A., et al. (2023) Hydrothermal Carbonization of Vegetable-Tanned Leather Shavings (HTC-VTS) for Environmental Remediation: Optimization of Process Conditions. Royal Society Open Science, 10, Article 230302.
https://doi.org/10.1098/rsos.230302
[22]  Jais, F.M., Chee, C.Y., Ismail, Z. and Ibrahim, S. (2021) Experimental Design via Naoh Activation Process and Statistical Analysis for Activated Sugarcane Bagasse Hydrochar for Removal of Dye and Antibiotic. Journal of Environmental Chemical Engineering, 9, Article 104829.
https://doi.org/10.1016/j.jece.2020.104829
[23]  Lekene, R.B.N., Ankoro, N.O., Nsami, N.J., Kouotou, D., Rahman, A.N. and Mbadacam, K.J. (2020) Preparation of Activated Carbons Based Balanites Aegyptiaca Shells by Chemical Activation: Optimization Conditions Using the Methodology of Experimental Design. European Journal of Advanced Chemistry Research, 1, 1-7.
https://doi.org/10.24018/ejchem.2020.1.6.33
[24]  Rabier, F. (2007) Modélisation par la méthode des plans d’expériences du comportement dynamique d’un module IGBT utilisé en traction ferroviaire. Thèse. Institut nationale polytechnique de Toulouse.
[25]  Goupy, J. (2006) Les plans d’expériences. Revue MODULAD, No. 34, 74-116.
[26]  Goupy, J. and Creighton, L. (2006) Introduction aux plans d’expériences. 3ème édition, Dunod, 325.
[27]  Kouotou, D., Manga, H.N., Baçaoui, A., Yaacoubi, A. and Mbadcam, J.K. (2013) Optimization of Activated Carbons Prepared by H3PO4 and Steam Activation of Oil Palm Shells. Journal of Chemistry, 2013, Article 654343.
https://doi.org/10.1155/2013/654343
[28]  Kwaghger, A. and Ibrahim, J. (2013) Optimization of Conditions for the Preparation of Activated Carbon from Mango Nuts Using HCl. American Journal of Engineering Research and Reviews, 2, 74-85.
[29]  Enaime, G., Baçaoui, A., Yaacoubi, A., Wichern, M. and Lübken, M. (2020) Hydrothermal Carbonization of the Filter Bed Remained After Filtration of Olive Mill Wastewater on Olive Stones for Biofuel Application. Biomass Conversion and Biorefinery, 12, 1237-1247.
https://doi.org/10.1007/s13399-020-00743-9
[30]  Bedin, K.C., Cazetta, A.L., Souza, I.P.A.F., Pezoti, O., Souza, L.S., Souza, P.S.C., et al. (2018) Porosity Enhancement of Spherical Activated Carbon: Influence and Optimization of Hydrothermal Synthesis Conditions Using Response Surface Methodology. Journal of Environmental Chemical Engineering, 6, 991-999.
https://doi.org/10.1016/j.jece.2017.12.069
[31]  Ndi Nsami, J. and Ketcha Mbadcam, J. (2013) The Adsorption Efficiency of Chemically Prepared Activated Carbon from Cola Nut Shells by on Methylene Blue. Journal of Chemistry, 2013, Article 469170.
https://doi.org/10.1155/2013/469170
[32]  Debina, B., Eric, S.N., Fotio, D., Arnaud, K.T., Lemankreo, D. and Rahman, A.N. (2020) Adsorption of Indigo Carmine Dye by Composite Activated Carbons Prepared from Plastic Waste (PET) and Banana Pseudo Stem. Journal of Materials Science and Chemical Engineering, 8, 39-55.
https://doi.org/10.4236/msce.2020.812004

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413