全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中微子振荡诱导放射性衰变研究
Research on Neutrino Oscillation-Induced Radioactive Decay

DOI: 10.12677/mp.2024.144016, PP. 135-144

Keywords: 中微子振荡,放射性原子核衰变,中微子振荡诱导放射性原子核衰变,衰变率
Neutrino Oscillation
, Decay of Radioactive Nuclei, Neutrino Oscillation-Induced Decay of Radioactive Nuclei, Decay Rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

放射性元素的衰变率通常被认为是恒定不变的常数,但是近年来有关太阳中微子通量可能影响放射性元素衰变率的研究引起了人们的关注和争论。本文根据中微子振荡理论和放射性元素衰变模型,研究了中微子振荡的物质效应及所形成的有效势场对放射性原子的影响。结果表明,中微子振荡的物质效应(MSW)是中微子与介质核子的共振;该共振不同于单个粒子之间的碰撞反应,它是中微子与介质粒子之间通过势场耦合的集体行为;该共振在强烈影响中微子振荡,导致中微子味转换几率增强的同时,也会对介质原子产生影响,激发其中的不稳定放射性原子核,增大其衰变几率。同时,我们还证明,即使中微子不能与介质核子(包括其中的放射性核素)形成共振(MSW),只要中微子振荡能够形成稳定的周期性有效势场,也会对放射性原子的衰变率产生影响。最后,我们对放射性元素衰变率测量值的波动进行了解释,并讨论了中微子振荡诱导放射性衰变的重要意义。
Usually, the decay rate of radioactive elements is considered to be a constant, but in recent years, studies on the possible influence of the solar neutrino flux on the decay rate of radioactive elements have attracted attention and controversy. In this paper, we investigate the material effects of neutrino oscillations and the influence of the resulting effective potential field on radioactive nuclei based on the theory of neutrino oscillations and the model of the decay of radioactive elements. The results show that matter effect on neutrino oscillations (MSW) is a resonance of neutrinos with atoms in medium. This resonance is different from the reaction of collisions between individual particles and is a collective behavior between neutrinos and atoms in medium linked by a potential field. This resonance, while strongly affecting neutrino oscillations and leading to enhanced neutrino flavor conversion probability, also affects atoms in medium, exciting unstable radioactive nuclei in them and increasing their decay probability. Furthermore, we show that even if neutrinos cannot form resonances (MSW) with atoms in medium (including radioactive atoms therein), neutrino oscillations can have an effect on the decay rate of radioactive atoms as long as they are capable of forming a stable periodic effective potential field. Finally, we explain the fluctuations in the measured decay rates of radioactive elements and discuss the significance of neutrino oscillation-induced radioactive decay.

References

[1]  Alburger, D.E. Harbottle, G. and Norton, E.F. (1986) Half-Life of 32Si. Earth and Planetary Science Letters, 78, 168-176.
https://doi.org/10.1016/0012-821X(86)90058-0
[2]  Ellis, K.J. (1990) The Effective Half-Life of a Broad Beam 238Pu/Be Total Body Neutron Radiator. Physics in Medicine and Biology, 35, 1079-1088.
https://doi.org/10.1088/0031-9155/35/8/004
[3]  Norman, E., Browne, E. Chan, Y., et al. (1998) Half-Life of 44Ti. Physical Review C, 57, 2010-2016.
https://doi.org/10.1103/PhysRevC.57.2010
[4]  Siegert, H., Schrader, H. and Sch?tzig, U. (1998) Half-Life Measurements of Europium Radionuclides and the Long-Term Stability of Detectors. Applied Radiation and Isotopes, 49, 1397-1401.
https://doi.org/10.1016/S0969-8043(97)10082-3
[5]  Falkenberg, E.D. (2001) Radioactive Decay Caused by Neutrinos? Apeiron, 8, 32-45.
[6]  Jenkins, J.H., Fischbach, E., Buncher, J.B., et al. (2009) Evidence for Correlations between Nuclear Decay Rates and Earth-Sun Distance. Astroparticle Physics, 32, 42-46.
https://doi.org/10.1016/j.astropartphys.2009.05.004
[7]  Jenkins, J.H. and Fischbach, E. (2009) Perturbation of Nuclear Decay Rates during the Solar Flare of 2006 December 13. Astroparticle Physics, 31, 407-411.
https://doi.org/10.1016/j.astropartphys.2009.04.005
[8]  Jenkins, J.H., Herminghuysen, K.R., Blue, T.E., et al. (2012) Additional Experimental Evidence for a Solar Influence Onnuclear Decay Rates. Astroparticle Physics, 37, 81-88.
https://doi.org/10.1016/j.astropartphys.2012.07.008
[9]  Veprev, D.P. and Muromtsev, V.I. (2012) Evidence of Solar Influence on the Tritium Decay Rate. Astroparticle Physics, 36, 26-30.
https://doi.org/10.1016/j.astropartphys.2012.04.012
[10]  Sturrock, P.A., Steinitz, G., Fischbach, E., et al. (2016) Analysis of Beta-Decay Data Acquired at the Physikalisch-Technische Bundesanstalt: Evidence of a Solar Influence. Astroparticle Physics, 84, 8-14.
https://doi.org/10.1016/j.astropartphys.2016.07.005
[11]  Milián-Sánchez, V., Scholkmann, F., Fernández de Córdoba, P., et al. (2020) Fluctuations in Measured Radioactive Decay Rates Inside a Modified Faraday Cage: Correlations with Space Weather. Scientific Reports, 10, Article No. 8525.
https://doi.org/10.1038/s41598-020-64497-0
[12]  Milián-Sánchez, V., Iglesias-Martínez, M.E., Scholkmann, F., et al. (2022) Reply to: Role of Ambient Humidity Underestimated in Research on Correlation between Radioactive Decay Rates and Space Weather. Scientific Reports, 12, Article No. 2530.
https://doi.org/10.1038/s41598-022-06179-7
[13]  Sturrock, P.A. (2022) Neutrino-Flux Variability, Nuclear-Decay Variability and Their Apparent Relationship. Space Science Reviews, 218, Article No. 23.
https://doi.org/10.1007/s11214-022-00878-3
[14]  Norman, E.B., Browne, E., Shugart, H.A., et al. (2009) Evidence against Correlations between Nuclear Decay Rates and Earth-Sun Distance. Astroparticle Physics, 31, 135-137.
https://doi.org/10.1016/j.astropartphys.2008.12.004
[15]  Kossert, K. and N?hle, O.J. (2015) Disproof of Solar Influence on the Decayrates of 90Sr/90Y. Astroparticle Physics, 69, 18-23.
https://doi.org/10.1016/j.astropartphys.2015.03.003
[16]  Bellotti, E., Broggini, C., Carlo, G.D., et al. (2015) Search for Time Modulations in the Decay Rate of 40K and 232Th. Astroparticle Physics, 61, 82-87.
[17]  Pommé, S., Pelczar, K., Kossert, K., et al. (2021) On the Interpretation of Annual Oscillations in 32Si and 36Cl Decay Rate Measurements. Scientific Reports, 11, Article No. 16002.
https://doi.org/10.1038/s41598-021-95600-8
[18]  Pommé, S. and Pelczar, K. (2022) Neutrino-Induced Decay: A Critical Review of the Arguments. Space Science Reviews, 218, Article No. 64.
https://doi.org/10.1007/s11214-022-00932-0
[19]  Pommé, S. and Pelczar, K. (2022) Role of Ambient Humidity Underestimated in Research on Correlation between Radioactive Decay Rates and Space Weather. Scientific Reports, 12, Article No. 2527.
https://doi.org/10.1038/s41598-022-06171-1
[20]  de Meijer, R.J., Blaauw, M. and Smit, F.D. (2011) No Evidence for Antineutrinos Significantly Influencing Exponential β+ Decay. Applied Radiation and Isotopes, 69, 320-326.
https://doi.org/10.1016/j.apradiso.2010.08.002
[21]  Barnes, V.E., Bernstein, D.J., Bryan, C.D., et al. (2019) Upper Limits on Perturbations of Nuclear Decay Rates Induced by Reactor Electron Antineutrinos. Applied Radiation and Isotopes, 149, 182-199.
https://doi.org/10.1016/j.apradiso.2019.01.027
[22]  Aston, J.P. (2012) Is Radioactive Decay Really Exponential? Europhysics Letters, 97, Article 52001.
https://doi.org/10.1209/0295-5075/97/52001
[23]  Elmaghraby, E.K. (2017) Configuration Mixing in Particle Decay and Reaction. Reports on Progress in Physics, 13, 1-7.
[24]  Formaggio, J.A. and Zeller, G.P. (2012) From eV to EeV: Neutrino Cross Sections across Energy Scales. Reviews of Modern Physics, 84, 1307-1341.
https://doi.org/10.1103/RevModPhys.84.1307
[25]  Pontecorvo, B. (1957) Mesonium and Anti-Mesonium. Sovietic Journal of Experimental and Theoretical Physics, 33, 549-551.
[26]  Wolfenstein, L. (1978) Neutrino Oscillations in Matter. Physical Review D, 17, 2369-2379.
https://doi.org/10.1103/PhysRevD.17.2369
[27]  Mikheyev, S.P. and Smirnov, A.Y. (1989) Resonant Neutrino Oscillations in Matter. Progress in Particle and Nuclear Physics, 23, 41-136.
https://doi.org/10.1016/0146-6410(89)90008-2
[28]  Davis Jr., R., Harmer, D.S. and Hoffman, K.C. (1968) Search for Neutrinos from the Sun. Physical Review Letters, 20, Article 1205.
https://doi.org/10.1103/PhysRevLett.20.1205
[29]  Fermi, E. (1934) Versuch einer Theorie der β-Strahlen. I. Zeitschrift für Physik, 88, 161-177.
https://doi.org/10.1007/BF01351864
[30]  Higgs, P.W. (2014) Nobel Lecture: Evading the Goldstone Theorem. Reviews of Modern Physics, 86, Article 851.
https://doi.org/10.1103/RevModPhys.86.851
[31]  Higgs, P.W. (1964) Broken Symmetries, Massless Particles and Gauge Fields. Physics Letters, 12, 132-133.
https://doi.org/10.1016/0031-9163(64)91136-9
[32]  Salam, A. and Ward, J.C. (1959) Weak and Electromagnetic Interactions. Il Nuovo Cimento (1955-1965), 11, 568-577.
https://doi.org/10.1007/BF02726525
[33]  Geiger, H. and Nuttall, J.M. (1911) The Ranges of the α Particles from Various Radioactive Substances and a Relation between Range and Period of Transformation. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 22, 613-621.
https://doi.org/10.1080/14786441008637156
[34]  周世勋, 陈灏. 量子力学教程(第三版) [M]. 北京: 高等教育出版社, 2022.
[35]  余向阳, 王俊忠. 周期性微扰的严格表述[J]. 四川师范大学学报(自然科学版), 1991(4): 135-137.
[36]  Kenneth, J., Chen, M.P. and Huang, C.K. (2003) Origin of Natural Radioactivity. Geological Journal of China Universities, 9, 1-10.
[37]  白希祥. 束缚态β-衰变及其天体物理意义[J]. 原子核物理评论, 2003(1): 11-17.
[38]  周书华. 核外环境对衰变率的影响[J]. 原子核物理评论, 2010, 27(3): 267-273.
[39]  张国文. 中微子地球动力理论[C]//中国地球物理学会. 1996年中国地球物理学会第十二届学术年会论文集. 北京: 中国建材出版社, 1996: 314.
[40]  张国文. 中微子地球演化说——探索地球起源与演化的奥秘[M]. 武汉: 武汉测绘科技大学出版社, 1999.
[41]  王章银, 牛中明. 相对论准粒子无规相位近似对原子核β衰变寿命的研究[J]. 中国科学(物理学 力学 天文学), 2016, 46(1): 184-193.
[42]  Burbidge, E.M., Burbidge, G.R., Fowler, W.A., et al. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547-650.
https://doi.org/10.1103/RevModPhys.29.547
[43]  Langanke, K. (2003) Nuclear Weak-Interaction Processes in Stars. Nuclear Physics A, 718, 92-100.
https://doi.org/10.1016/S0375-9474(03)00684-5
[44]  Nik?i?, T., Marketin, T., Vretenar, D., et al. (2005) β-Decay Rates of ??-Process Nuclei in the Relativistic Quasiparticle Random Phase Approximation. Physical Review C, 71, Article ID: 014308.
https://doi.org/10.1103/PhysRevC.71.014308
[45]  Marketin, T., Vretenar, D. and Ring, P. (2007) Calculation of β-Decay Rates in a Relativistic Model with Momentum-Dependent Self-Energies. Physical Review C, 75, Article ID: 024304.
https://doi.org/10.1103/PhysRevC.75.024304
[46]  Vasiliev, B.V. (2020) Effect of Reactor Neutrinos on Beta-Decay. Journal of Modern Physics, 11, 91-96.
https://doi.org/10.4236/jmp.2020.111005
[47]  Vasiliev, B.V. (2020) The Beta-Decay Induced by Neutrino Flux. Journal of Modern Physics, 11, 608-615.
https://doi.org/10.4236/jmp.2020.115040

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133