全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

光催化单糖转化为高值化学品的研究进展
Research Progress in Photocatalytic Conversion of Monosaccharides to High-Value Chemicals

DOI: 10.12677/hjcet.2024.144026, PP. 244-257

Keywords: 葡萄糖,果糖,光催化,5-羟甲基糠醛,2,5-呋喃二甲醛,2,5-呋喃二甲酸
Glucose
, Fructose, Photocatalytic, HMF, DFF, FDCA

Full-Text   Cite this paper   Add to My Lib

Abstract:

化石燃料的枯竭要求寻找可替代的可再生原料和利用对环境无害的方法来生产高附加值的化合物和燃料。在此背景下,生物质的高效利用已成为一个重要的研究领域,因为它产量大,来源广泛,代表了一种可替代的绿色可再生碳源。目前已经探索了多种转化技术,其中多相光催化具有反应条件温和、催化剂与产物易分离、绿色无害等优点,逐渐受到研究人员关注。利用不同的生物质组分作为原料,调整光催化剂的类型、溶剂和催化剂的物理化学特性等实验条件,获得了有价值的不同选择性的化学物质。本文主要论述了金属化合物和碳氮聚合物催化剂对单糖的光催化转化活性。本文还梳理了光催化葡萄糖和果糖生成5-羟甲基糠醛(HMF),以及进一步光催化氧化HMF的反应机理,整理了近年来光催化单糖转化为高值化学品反应的研究进展,同时对最新的一锅法转化单糖和HMF为高值化学品反应进行了展望。
The depletion of fossil fuels requires the search for alternative renewable feedstocks and the use of environmentally sound methods to produce high value-added compounds and fuels. In this context, the efficient utilisation of biomass has become an important area of research as it is highly productive, widely available and represents an alternative green renewable carbon source. Various conversion technologies have been explored, among which multiphase photocatalysis has gradually gained the attention of researchers due to its advantages of mild reaction conditions, easy separation of catalysts and products, and green and harmless nature. Using different biomass components as feedstocks and adjusting experimental conditions such as the type of photocatalyst, solvent and physicochemical properties of the catalyst, valuable chemicals with different selectivities have been obtained. This paper deals with the photocatalytic conversion activity of metal compounds and carbon and nitrogen polymer catalysts for monosaccharides. This paper also teases out the reaction mechanism of photocatalytic glucose and fructose to produce 5-hydroxy methyl furfural (HMF), and further photocatalytic oxidation of HMF, and collates the research progress in recent years on photocatalytic monosaccharides conversion to high-value chemicals reactions, as well as the outlook of the most recent one-pot method of converting monosaccharides and HMF to high-value chemicals reactions.

References

[1]  Ang, B.W. and Zhang, F.Q. (2000) A Survey of Index Decomposition Analysis in Energy and Environmental Studies. Energy, 25, 1149-1176.
https://doi.org/10.1016/s0360-5442(00)00039-6
[2]  Kermani, M.B. and Morshed, A. (2003) Carbon Dioxide Corrosion in Oil and Gas Production—A Compendium. CORROSION, 59, 659-683.
https://doi.org/10.5006/1.3277596
[3]  Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C.B., Frieler, K., Knutti, R., et al. (2009) Greenhouse-Gas Emission Targets for Limiting Global Warming to 2℃. Nature, 458, 1158-1162.
https://doi.org/10.1038/nature08017
[4]  Fearnside, P.M. (2000) Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, De-Composition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation. Climatic Change, 46, 115-158.
https://doi.org/10.1023/A:1005569915357
[5]  Sabonnadiere, J.-C. (2010) Renewable Energy Technologies. John Wiley & Sons.
[6]  Foxon, T.J., Gross, R., Chase, A., Howes, J., Arnall, A. and Anderson, D. (2005) UK Innovation Systems for New and Renewable Energy Technologies: Drivers, Barriers and Systems Failures. Energy Policy, 33, 2123-2137.
https://doi.org/10.1016/j.enpol.2004.04.011
[7]  Johansson, T.B. (1993) Renewable Energy: Sources for Fuels and Electricity. Island Press.
[8]  Jacobson, M.Z. and Delucchi, M.A. (2011) Providing All Global Energy with Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials. Energy Policy, 39, 1154-1169.
https://doi.org/10.1016/j.enpol.2010.11.040
[9]  Twidell, J. and Weir, T. (2015) Renewable Energy Resources. Routledge.
[10]  Bozell, J.J. and Petersen, G.R. (2010) Technology Development for the Production of Biobased Products from Biorefinery Carbohydrates—The US Department of Energy’s “Top 10” Revisited. Green Chemistry, 12, 539-554.
https://doi.org/10.1039/b922014c
[11]  Zhou, C., Xia, X., Lin, C., Tong, D. and Beltramini, J. (2011) Catalytic Conversion of Lignocellulosic Biomass to Fine Chemicals and Fuels. Chemical Society Reviews, 40, 5588-5617.
https://doi.org/10.1039/c1cs15124j
[12]  Zakrzewska, M.E., Bogel-?ukasik, E. and Bogel-?ukasik, R. (2010) Ionic Liquid-Mediated Formation of 5-Hydroxymethylfurfural—A Promising Biomass-Derived Building Block. Chemical Reviews, 111, 397-417.
https://doi.org/10.1021/cr100171a
[13]  Zhang, Z., Liu, B., Lv, K., Sun, J. and Deng, K. (2014) Aerobic Oxidation of Biomass Derived 5-Hydroxymethylfurfural into 5-Hydroxymethyl-2-Furancarboxylic Acid Catalyzed by a Montmorillonite K-10 Clay Immobilized Molybdenum Acetylacetonate Complex. Green Chemistry, 16, 2762-2770.
https://doi.org/10.1039/c4gc00062e
[14]  De Jong, E., Dam, M.A., Sipos, L. and Gruter, G.J.M. (2012) Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters. ACS Symposium Series, 1105, 1-13.
https://doi.org/10.1021/bk-2012-1105.ch001
[15]  Tsutsumi, K., Kurata, N., Takata, E., Furuichi, K., Nagano, M. and Tabata, K. (2014) Silicon Semiconductor-Assisted Br?nsted Acid-Catalyzed Dehydration: Highly Selective Synthesis of 5-Hydroxymethylfurfural from Fructose under Visible Light Irradiation. Applied Catalysis B: Environmental, 147, 1009-1014.
https://doi.org/10.1016/j.apcatb.2013.10.032
[16]  卢秋杭, 任凯彬, 姜昊, 等. 光催化剂的种类及制备与应用研究进展[J]. 中国陶瓷工业, 2020, 27(4): 19-23.
[17]  Colmenares, J.C., Magdziarz, A. and Bielejewska, A. (2011) High-Value Chemicals Obtained from Selective Photo-Oxidation of Glucose in the Presence of Nanostructured Titanium Photocatalysts. Bioresource Technology, 102, 11254-11257.
https://doi.org/10.1016/j.biortech.2011.09.101
[18]  Bellardita, M., García-López, E.I., Marcì, G., Megna, B., Pomilla, F.R. and Palmisano, L. (2015) Photocatalytic Conversion of Glucose in Aqueous Suspensions of Heteropolyacid-TiO2 Composites. RSC Advances, 5, 59037-59047.
https://doi.org/10.1039/c5ra09894g
[19]  Payormhorm, J., Chuangchote, S., Kiatkittipong, K., Chiarakorn, S. and Laosiripojana, N. (2017) Xylitol and Gluconic Acid Productions via Photocatalytic-Glucose Conversion Using TiO2 Fabricated by Surfactant-Assisted Techniques: Effects of Structural and Textural Properties. Materials Chemistry and Physics, 196, 29-36.
https://doi.org/10.1016/j.matchemphys.2017.03.058
[20]  Hattori, M., Kamata, K. and Hara, M. (2017) Photoassist-Phosphorylated TiO2 as a Catalyst for Direct Formation of 5-(Hydroxymethyl) Furfural from Glucose. Physical Chemistry Chemical Physics, 19, 3688-3693.
https://doi.org/10.1039/c6cp06864b
[21]  Tsutsumi, K., Kurata, N., Takata, E., Furuichi, K., Nagano, M. and Tabata, K. (2014) Silicon Semiconductor-Assisted Br?nsted Acid-Catalyzed Dehydration: Highly Selective Synthesis of 5-Hydroxymethylfurfural from Fructose under Visible Light Irradiation. Applied Catalysis B: Environmental, 147, 1009-1014.
https://doi.org/10.1016/j.apcatb.2013.10.032
[22]  Cao, J., Xing, J., Zhang, Y., Tong, H., Bi, Y., Kako, T., et al. (2013) Photoelectrochemical Properties of Nanomultiple CaFe2O4/ZnFe2O4pn Junction Photoelectrodes. Langmuir, 29, 3116-3124.
https://doi.org/10.1021/la304377z
[23]  Xu, Q., Feng, J., Li, L., Xiao, Q. and Wang, J. (2015) Hollow ZnFe2O4/TiO2 Composites: High-Performance and Recyclable Visible-Light Photocatalyst. Journal of Alloys and Compounds, 641, 110-118.
https://doi.org/10.1016/j.jallcom.2015.04.076
[24]  Fu, X., Li, S., Wen, J., Kang, F., Huang, C. and Zheng, X. (2021) Visible Light-Induced Photo-Fenton Dehydration of Fructose into 5-Hydroxymethylfurfural over ZnFe2O4-Coated Ag Nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609, Article 125685.
https://doi.org/10.1016/j.colsurfa.2020.125685
[25]  Davis, S.E., Zope, B.N. and Davis, R.J. (2012) On the Mechanism of Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Supported Pt and Au Catalysts. Green Chemistry, 14, 143-147.
https://doi.org/10.1039/c1gc16074e
[26]  Davis, S.E., Benavidez, A.D., Gosselink, R.W., Bitter, J.H., de Jong, K.P., Datye, A.K., et al. (2014) Kinetics and Mechanism of 5-Hydroxymethylfurfural Oxidation and Their Implications for Catalyst Development. Journal of Molecular Catalysis A: Chemical, 388, 123-132.
https://doi.org/10.1016/j.molcata.2013.09.013
[27]  邹彬, 陈学珊, 郭静. 5-羟甲基糠醛催化氧化为2,5-呋喃二甲酸的研究进展[J]. 应用化工, 2016, 45(11): 2130-2134, 2138.
[28]  Siankevich, S., Savoglidis, G., Fei, Z., Laurenczy, G., Alexander, D.T.L., Yan, N., et al. (2014) A Novel Platinum Nanocatalyst for the Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid under Mild Conditions. Journal of Catalysis, 315, 67-74.
https://doi.org/10.1016/j.jcat.2014.04.011
[29]  Chen, C., Wang, L., Zhu, B., Zhou, Z., El-Hout, S.I., Yang, J., et al. (2021) 2,5-Furandicarboxylic Acid Production via Catalytic Oxidation of 5-Hydroxymethylfurfural: Catalysts, Processes and Reaction Mechanism. Journal of Energy Chemistry, 54, 528-554.
https://doi.org/10.1016/j.jechem.2020.05.068
[30]  Krivtsov, I., Ilkaeva, M., Salas-Colera, E., Amghouz, Z., García, J.R., Díaz, E., et al. (2017) Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO2 Anatase. The Journal of Physical Chemistry C, 121, 6770-6780.
https://doi.org/10.1021/acs.jpcc.7b00354
[31]  Nowak, I. and Ziolek, M. (1999) Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99, 3603-3624.
https://doi.org/10.1021/cr9800208
[32]  Jiao, X., Zheng, K., Chen, Q., Li, X., Li, Y., Shao, W., et al. (2020) Photocatalytic Conversion of Waste Plastics into C2 Fuels under Simulated Natural Environment Conditions. Angewandte Chemie International Edition, 59, 15497-15501.
https://doi.org/10.1002/anie.201915766
[33]  Eleutério, A., Santos, J.F., Passos, F.B., Aranda, D.A.G. and Schmal, M. (1998) The Effect of Preparation Method on Pt/Nb2O5 Catalysts. Brazilian Journal of Chemical Engineering, 15, 192-197.
https://doi.org/10.1590/s0104-66321998000200014
[34]  Murayama, T., Chen, J., Hirata, J., Matsumoto, K. and Ueda, W. (2014) Hydrothermal Synthesis of Octahedra-Based Layered Niobium Oxide and Its Catalytic Activity as a Solid Acid. Catalysis Science & Technology, 4, 4250-4257.
https://doi.org/10.1039/c4cy00713a
[35]  Nakajima, K., Baba, Y., Noma, R., Kitano, M., Kondo, J.N., Hayashi, S., et al. (2011) Nb2O5 nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. Journal of the American Chemical Society, 133, 4224-4227.
https://doi.org/10.1021/ja110482r
[36]  Kreissl, H.T., Li, M.M.J., Peng, Y., Nakagawa, K., Hooper, T.J.N., Hanna, J.V., et al. (2017) Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity. Journal of the American Chemical Society, 139, 12670-12680.
https://doi.org/10.1021/jacs.7b06856
[37]  Xia, Q., Chen, Z., Shao, Y., Gong, X., Wang, H., Liu, X., et al. (2016) Direct Hydrodeoxygenation of Raw Woody Biomass into Liquid Alkanes. Nature Communications, 7, Article No. 11162.
https://doi.org/10.1038/ncomms11162
[38]  Huang, H., Wang, C., Huang, J., Wang, X., Du, Y. and Yang, P. (2014) Structure Inherited Synthesis of N-Doped Highly Ordered Mesoporous Nb2O5 as Robust Catalysts for Improved Visible Light Photoactivity. Nanoscale, 6, 7274-7280.
https://doi.org/10.1039/c4nr00505h
[39]  Wang, Y., Kong, X., Jiang, M., Zhang, F. and Lei, X. (2020) A Z-Scheme ZnIn2S4/Nb2O5 Nanocomposite: Constructed and Used as an Efficient Bifunctional Photocatalyst for H2 Evolution and Oxidation of 5-Hydroxymethylfurfural. Inorganic Chemistry Frontiers, 7, 437-446.
https://doi.org/10.1039/c9qi01196j
[40]  Zhang, H., Wu, Q., Guo, C., Wu, Y. and Wu, T. (2017) Photocatalytic Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran over Nb2O5 under Visible Light. ACS Sustainable Chemistry & Engineering, 5, 3517-3523.
https://doi.org/10.1021/acssuschemeng.7b00231
[41]  Dhingra, S., Chhabra, T., Krishnan, V. and Nagaraja, C.M. (2020) Visible-Light-Driven Selective Oxidation of Biomass-Derived HMF to DFF Coupled with H2 Generation by Noble Metal-Free Zn0.5Cd0.5S/MnO2 Heterostructures. ACS Applied Energy Materials, 3, 7138-7148.
https://doi.org/10.1021/acsaem.0c01189
[42]  Gonzalez-Casamachin, D.A., Rivera De la Rosa, J., Lucio-Ortiz, C.J., Sandoval-Rangel, L. and García, C.D. (2020) Partial Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using O2 and a Photocatalyst of a Composite of ZnO/PPy under Visible-Light: Electrochemical Characterization and Kinetic Analysis. Chemical Engineering Journal, 393, Article 124699.
https://doi.org/10.1016/j.cej.2020.124699
[43]  Han, G., Jin, Y., Burgess, R.A., Dickenson, N.E., Cao, X. and Sun, Y. (2017) Visible-light-driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/cds Nanosheets. Journal of the American Chemical Society, 139, 15584-15587.
https://doi.org/10.1021/jacs.7b08657
[44]  Ye, H., Shi, R., Yang, X., Fu, W. and Chen, Y. (2018) P-Doped ZnxCd1-xS Solid Solutions as Photocatalysts for Hydrogen Evolution from Water Splitting Coupled with Photocatalytic Oxidation of 5-Hydroxymethylfurfural. Applied Catalysis B: Environmental, 233, 70-79.
https://doi.org/10.1016/j.apcatb.2018.03.060
[45]  Meng, S., Wu, H., Cui, Y., Zheng, X., Wang, H., Chen, S., et al. (2020) One-Step Synthesis of 2D/2D-3D NiS/Zn3In2S6 Hierarchical Structure toward Solar-to-Chemical Energy Transformation of Biomass-Relevant Alcohols. Applied Catalysis B: Environmental, 266, Article 118617.
https://doi.org/10.1016/j.apcatb.2020.118617
[46]  Teter, D.M. and Hemley, R.J. (1996) Low-Compressibility Carbon Nitrides. Science, 271, 53-55.
https://doi.org/10.1126/science.271.5245.53
[47]  Zhang, Y., Thomas, A., Antonietti, M. and Wang, X. (2008) Activation of Carbon Nitride Solids by Protonation: Morphology Changes, Enhanced Ionic Conductivity, and Photoconduction Experiments. Journal of the American Chemical Society, 131, 50-51.
https://doi.org/10.1021/ja808329f
[48]  Wang, X., Meng, S., Zhang, S., Zheng, X. and Chen, S. (2020) 2D/2D MXene/g-C3N4 for Photocatalytic Selective Oxidation of 5-Hydroxymethylfurfural into 2,5-Formylfuran. Catalysis Communications, 147, Article 106152.
https://doi.org/10.1016/j.catcom.2020.106152
[49]  García-López, E.I., Pomilla, F.R., Bloise, E., Lü, X., Mele, G., Palmisano, L., et al. (2020) C3N4 Impregnated with Porphyrins as Heterogeneous Photocatalysts for the Selective Oxidation of 5-Hydroxymethyl-2-Furfural under Solar Irradiation. Topics in Catalysis, 64, 758-771.
https://doi.org/10.1007/s11244-020-01293-0
[50]  Zhang, H., Feng, Z., Zhu, Y., Wu, Y. and Wu, T. (2019) Photocatalytic Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran on WO3/g-C3N4 Composite under Irradiation of Visible Light. Journal of Photochemistry and Photobiology A: Chemistry, 371, 1-9.
https://doi.org/10.1016/j.jphotochem.2018.10.044
[51]  Xu, S., Zhou, P., Zhang, Z., Yang, C., Zhang, B., Deng, K., et al. (2017) Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using O2 and a Photocatalyst of Co-Thioporphyrazine Bonded to g-C3N4. Journal of the American Chemical Society, 139, 14775-14782.
https://doi.org/10.1021/jacs.7b08861
[52]  陈建丽. 氧化石墨烯的功能化及其衍生物, 复合物的制备与性能研究[D]: [博士学位论文]. 长春: 吉林大学, 2013.
[53]  Ma, B., Wang, Y., Guo, X., Tong, X., Liu, C., Wang, Y., et al. (2018) Photocatalytic Synthesis of 2,5-Diformylfuran from 5-Hydroxymethyfurfural or Fructose over Bimetallic Au-Ru Nanoparticles Supported on Reduced Graphene Oxides. Applied Catalysis A: General, 552, 70-76.
https://doi.org/10.1016/j.apcata.2018.01.002
[54]  Guo, X., Hao, C., Jin, G., Zhu, H. and Guo, X. (2014) Copper Nanoparticles on Graphene Support: An Efficient Photocatalyst for Coupling of Nitroaromatics in Visible Light. Angewandte Chemie, 126, 2004-2008.
https://doi.org/10.1002/ange.201309482
[55]  Guo, X., Jiao, Z., Jin, G. and Guo, X. (2015) Photocatalytic Fischer-Tropsch Synthesis on Graphene-Supported Worm-Like Ruthenium Nanostructures. ACS Catalysis, 5, 3836-3840.
https://doi.org/10.1021/acscatal.5b00697

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413