全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的游客餐饮评论情感分析——以秦皇岛市为例
Emotional Analysis of Tourists’ Catering Comments Based on Deep Learning—Taking Qinhuangdao as an Example

DOI: 10.12677/hjdm.2024.143014, PP. 149-161

Keywords: 情感分析,深度学习,预训练语言模型,在线评论
Sentiment Analysis
, Deep Learning, Pre-Training Language Model, Online Review

Full-Text   Cite this paper   Add to My Lib

Abstract:

游客餐饮体验直接影响整个城市的旅游竞争力,对旅游业的影响不容小觑。游客餐饮评论体现了游客对旅行目的地餐饮体验的真实感受,具有很高的研究价值。本文对秦皇岛市游客餐饮评论进行情感分析,并基于负面评论探寻影响游客餐饮体验的因素。分别采用Word2vec和BERT-wwm-ext预训练语言模型作为词嵌入层,将词向量化结果输入TextCNN、GRU、BiLSTM深度学习模型进行对比分析。训练结果表明:BERT-wwm-ext-BiLSTM模型准确率达96.89%,模型效果优于其他对比模型。最后对该模型分类结果的负面评价进行主题分析,确定负面评价主要涉及服务、价格、环境、菜品以及味道五个方面。相关部门应及时做出整改,提高游客餐饮体验,增强秦皇岛旅游核心竞争力。
Tourists’ catering experience directly affects the tourism competitiveness of the whole city, and its impact on tourism should not be underestimated. Tourists’ catering comments reflect tourists’ real feelings about the catering experience of their travel destinations, which has high research value. This paper makes an emotional analysis of tourists’ catering comments in Qinhuangdao, and explores the factors that affect tourists’ catering experience based on negative comments. Word2vec and BERT-wwm-ext pre-training language models are used as word embedding layers respectively, and the results of word vectorization are input into TextCNN, GRU and BiLSTM deep learning models for comparative analysis. The training results show that the accuracy of BERT-wwm-ext-BiLSTM model is 96.89%, and the effect of the model is better than other comparative models. Finally, the negative evaluation of the classification results of this model is analyzed, and it is determined that the negative evaluation mainly involves five aspects: service, price, environment, dishes and taste. Relevant departments should make timely rectification to improve the catering experience of tourists and enhance the core competitiveness of Qinhuangdao tourism.

References

[1]  唐慧丰, 谭松波, 程学旗. 基于监督学习的中文情感分类技术比较研究[J]. 中文信息学报, 2007(6): 88-94+108.
[2]  邓慈云, 余国清. 基于朴素贝叶斯的影评情感分析研究[J]. 智能计算机与应用, 2023, 13(2): 210-212+217.
[3]  周萌. 基于LSTM和Word2Vec的情感分析在商品评论中的应用[J]. 统计与管理, 2019(12): 81-84.
[4]  Devlin, J, Chang, M.W., Lee, K. and Toutanova, K. (2019) BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding. 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, 2-7 June 2019, 4171-4186.
[5]  高丽君, 张宇涛, 林昀萱, 等. 基于BiLSTM的酒店顾客满意度评价模型[J]. 科技创新与生产力, 2022(12): 65-70.
[6]  张亚立, 李征宇, 孙平. 基于情感的多头注意力卷积Transformer + CNN的假新闻检测[J]. 数据挖掘, 2023, 13(4): 299-311.
[7]  邵辉. 基于BERT-TextCNN的中文短文本情感分析[J]. 信息与电脑(理论版), 2022, 34(1): 77-80.
[8]  李薇, 杨东山. 基于回头客在线评论的餐饮消费满意度影响因素分析[J]. 重庆邮电大学学报(社会科学版), 2021, 33(2): 125-134.
[9]  牛艺桦. 基于在线评论的餐饮消费者关注偏好研究[D]: [硕士学位论文]. 郑州: 河南财经政法大学, 2023.
[10]  李波. 游客餐饮评论方面情感分析及智慧旅游平台构建[D]: [硕士学位论文]. 桂林: 桂林电子科技大学, 2022.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133